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Abstract: 42 
INTRODUCTION  43 
The Alzheimer’s Association and Society of Nuclear Medicine and Molecular Imaging convened 44 
a multidisciplinary Workgroup to update Appropriate Use Criteria for amyloid Positron Emission 45 
Tomography (PET) and develop AUC for tau PET. 46 
METHODS  47 
The Workgroup identified key research questions that guided a systematic literature review on 48 
clinical amyloid/tau PET. Building on this review, the Workgroup developed 17 clinical scenarios 49 
in which amyloid or tau PET may be considered. A modified Delphi approach was used to rate 50 
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each scenario by consensus as “rarely appropriate,” “uncertain” or “appropriate”. Ratings were 51 
performed separately for amyloid and tau PET as stand-alone modalities. 52 
RESULTS  53 
For amyloid PET, 7 scenarios were rated “appropriate”, 2 “uncertain” and 8 “rarely appropriate”. 54 
Ratings for tau PET were: 5 scenarios “appropriate”, 6 “uncertain” and 6 “rarely appropriate.” 55 
DISCUSSION  56 
AUC for amyloid and tau PET provide expert recommendations for clinical use of these 57 
technologies in the evolving landscape of Alzheimer’s disease diagnostics and therapeutics.  58 
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 92 

1. Introduction and Scope 93 
 94 

Alzheimer’s disease (AD) is defined neuropathologically by the deposition of extracellular 95 
plaques composed of aggregated forms of the Amyloid-β (Aβ) polypeptide, and intra-neuronal 96 
neurofibrillary tangles composed of aggregated hyper-phosphorylated tau protein.1In the past 97 
twenty years, positron emission tomography (PET) radiotracers were developed to image 98 
amyloid plaques and tau tangles in vivo2-7. Currently, three fluorine-18 labelled amyloid 99 
radiotracers (18F-florbetapir, 18F-flutemetamol, 18F-florbetaben) are approved for clinical use by 100 
regulatory agencies in the U.S. and other countries to estimate amyloid plaque density in adult 101 
patients with cognitive impairment who are being evaluated for AD and other causes of 102 
cognitive decline. In 2020 the United States (U.S.) Food and Drug Administration (FDA) 103 
approved the tau radiotracer 18F-flortaucipir to estimate the density and distribution of 104 
neurofibrillary tangles (NFTs) in adult patients with cognitive impairment who are being 105 
evaluated for AD.  106 
 107 
In 2013, a taskforce convened by the Alzheimer’s Association (AA) and the Society of Nuclear 108 
Medicine and Molecular Imaging (SNMMI) developed Appropriate Use Criteria (AUC) to define 109 
the types of patients and clinical circumstances in which amyloid PET could be used, and, 110 
importantly, clinical scenarios in which amyloid PET was felt to be inappropriate8. The goal of 111 
this article is to update the AUC for amyloid PET based on additional data that have emerged in 112 
the decade since the original AUC were published, including advances in therapeutics designed 113 
to lower cerebral amyloid burden. Recognizing these important advances, in October 2023 the 114 
U.S. Centers for Medicare and Medicaid Services (CMS) retired its 2013 National Coverage 115 
Decision which restricted coverage of amyloid PET to a single scan per patient under approved 116 
research studies, thus promoting greater patient access to this important clinical tool.  CMS did 117 
not issue a non-coverage policy for tau PET; thus, it is covered by CMS under the discretion of 118 
the local Medicare Administrator Contractors. Additionally, we propose for the first time AUC for 119 
tau PET, recognizing that this is a relatively novel technology and that data on its clinical utility 120 
are currently limited. The revised AUC were developed by a multidisciplinary Workgroup of 121 
experts convened by AA-SNMMI (see Methods). 122 
 123 
The primary goal of these updated AUC is to assist clinicians in identifying clinical scenarios in 124 
which amyloid or tau PET may be useful for guiding the diagnosis and management of patients 125 
who have, or are at risk for, cognitive decline, while also highlighting scenarios in which PET 126 
scans are unlikely to provide clinically useful information. The primary intended audience is 127 
dementia specialists who spend a significant proportion of their clinical effort caring for patients 128 
with cognitive complaints. The manuscript is also meant to serve as a general reference for a 129 
broader audience interested in implementation of amyloid and tau PET in clinical practice. In 130 
addition, the AUC are intended to support policy makers and payers in promoting cost-effective 131 
access to this important diagnostic tool to patients who are most likely to benefit in the setting of 132 
limited healthcare resources. Finally, the Workgroup members recognize that amyloid and tau 133 
PET are part of a growing landscape of molecular biomarkers of AD pathophysiology, including 134 
cerebrospinal fluid (CSF) and blood-based biomarkers of amyloid, tau, and neurodegeneration. 135 
The reader is referred to published AUC for CSF biomarker9and Appropriate Use 136 
Recommendations for blood-based AD biomarkers10. The optimal integration of the entire 137 
armamentarium of AD biomarkers into future diagnostic and care algorithms is beyond the 138 
scope of this article but represents an important area for future research. 139 

 140 
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 141 

2. Background  142 
 143 

The current document is an update the previously published AUC for amyloid PET8. The update 144 
integrates extensive literature published over the past decade examining the diagnostic and 145 
prognostic value of amyloid PET in longitudinal clinical cohorts and observational studies; 146 
evaluating the clinical utility of amyloid PET for patient diagnosis, management and health 147 
outcomes; further validating the diagnostic validity of amyloid PET in prospective PET-to-148 
autopsy studies; and employing amyloid PET in AD clinical trials, including the development of 149 
amyloid-targeting antibodies which recently received approval from the U.S. FDA for the 150 
treatment of early clinical stages of AD11-13.The updated AUC reflect an increasing awareness 151 
that amyloid deposition begins two decades or longer before the onset of cognitive impairment, 152 
defining a prolonged preclinical phase of AD, with potential increased demand for testing among 153 
cognitively unimpaired individuals or individuals experiencing subjective cognitive decline (see 154 
definitions below).  Finally, the updated AUC examine for the first time the potential role of tau 155 
PET in common clinical scenarios given recent FDA approval of 18F-flortaucipir for clinical use. 156 
Importantly, neocortical tau PET signal appears more proximally to clinical symptoms than 157 
neocortical amyloid PET signal. In contrast to the much more extensive literature on amyloid 158 
PET, 18F-flortaucipir is a relatively new radiopharmaceutical with limited data, particularly as 159 
pertaining to longitudinal follow-Up and clinical utility.  As with amyloid imaging, 160 
recommendations represent expert opinion based on currently available information. 161 
 162 
Amyloid and tau PET detect amyloid plaques and neurofibrillary tangles, the core elements that 163 
collectively define AD neuropathology. In the clinical setting, their primary role is to provide 164 
evidence for or against the presence of these disease-defining lesions in patients who are 165 
seeking assessment for cognitive symptoms. The PET scans should be performed when there 166 
is significant uncertainty regarding the etiology of cognitive impairment after a comprehensive 167 
assessment by a dementia specialist (see definition below), AD is a diagnostic consideration, 168 
and knowledge of amyloid or tau status is expected to help establish an etiologic diagnosis and 169 
guide patient management (e.g., to confirm the presence of amyloid plaques in a patient who is 170 
a candidate for an amyloid lowering therapy). Amyloid or tau PET should not be used as a 171 
substitute for a comprehensive clinical examination, which should include a detailed medical 172 
and neurobehavioral history, physical examination, mental status testing, blood tests to rule-out 173 
potentially reversible causes of cognitive impairment and structural brain imaging. The entirety 174 
of these clinical data are required to optimally integrate amyloid/tau PET results into clinical 175 
decision-making regarding diagnosis and patient management. 176 
 177 
The guidelines presented here highlight general principles for integrating amyloid and tau PET 178 
into clinical care, including the potential appropriateness of testing in specific clinical scenarios. 179 
These represent general recommendations and should not be considered a substitute for 180 
clinical judgment exercised by the healthcare provider caring for an individual patient. 181 
 182 
As recommended in the previous AUC, the following sequence of events would generally be 183 
appropriate for the integration of amyloid or tau PET into clinical practice:  (i) evaluation by a 184 
dementia expert to assess the need for diagnostic testing, possibly to include amyloid or tau 185 
PET, if the AUC are met; (ii) referral to a qualified provider of PET services; (iii) performance, 186 
interpretation, and reporting of the PET result according to established standards; (iv) 187 
incorporation of the PET result into the clinical assessment process by the dementia expert; and 188 
(v) disclosure of the PET result by the dementia expert to the patient, family and care partners, 189 
along with discussion of the result and its management consequences.  190 
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 191 

3. Key Definitions  192 

The following definitions provide clarification of key terms used in this document and the clinical 193 
scenarios for appropriate use presented by this workgroup.   194 
 195 
The Continuum of Cognitively Unimpaired, Subjective Cognitive Decline, Mild Cognitive 196 
Impairment and Dementia 197 

Cognitive impairment acquired in adulthood is diagnosed by a history from the patient and a 198 
knowledgeable proxy for the patient, and by examination of objective cognitive performance 199 
under direct observation by a skilled clinician. Cognitive functioning exists on a continuum 200 
anchored at one end by the state of being cognitively unimpaired and, on the other end, by the 201 
state of severe dementia, with intermediate states in between.  The definitions of cognitive 202 
impairment to be used in the current document are grounded in the clinical judgment that they 203 
represent a decline from a prior higher level of functioning.  More detailed definitions are found 204 
in the NIA-AA Research Framework  consensus definitions (Table 5 in14, but below are 205 
definitions used by this workgroup to establish AUC for amyloid and tau PET.  206 

 207 
• Cognitively unimpaired (CU): Cognitive performance is within the expected range for that 208 

individual based on clinical judgment or cognitive test performance, and the patient does not 209 
endorse significant cognitive complaints14. 210 

• Subjective cognitive decline (SCD): Cognitive complaints in the absence of objective 211 
evidence of decline below expected normative levels15.   212 

• Mild cognitive impairment (MCI): Cognitive performance in at least one domain that is 213 
below the expected range for that individual based on all available information, but daily 214 
activities are performed in a largely independent manner. The definition of MCI allows for 215 
mild functional impact on the more complex activities of daily life14,16. 216 

• Dementia: Substantial cognitive impairment that affects multiple cognitive domains, 217 
interferes with daily functioning and results in loss of independence. Dementia can be 218 
further subdivided into mild, moderate and severe stages reflecting incrementally worse 219 
functioning in first instrumental (i.e., complex) and then basic activities of daily living14,17. 220 

Clinical diagnosis requires the use of categorical syndromic diagnostic labels such as SCD, MCI 221 
or dementia, but there are many patients whose clinical presentation falls in between two of 222 
these. Thus, while this document will make recommendations that are syndrome-specific, 223 
clinical judgment requires that each patient must be understood as unique and not as a generic 224 
exemplar of a categorical diagnosis. 225 
 226 

Alzheimer’s Disease and the Etiology of cognitive disorders 227 

In the context of the current document, where amyloid and tau biomarkers are being applied to 228 
patients with cognitive impairment, we maintain a conceptual separation between cognitive 229 
disorders and underlying etiology.  The most common symptomatic presentation of AD 230 
pathology is a disorder that begins with amnestic complaints that may not substantially interfere 231 
with daily activities, and then progresses to a multidomain cognitive disorder (i.e., variably 232 
involving language, visuospatial and executive deficits as well as behavioral abnormalities)16,17. 233 
The clinical syndrome of amnestic dementia, originally referred to as probable AD in the 1984 234 
NINCDS-ADRDA criteria,18 is often, but not always, due to AD pathology. Neuropathologic 235 
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investigations19 have shown that clinical diagnostic criteria alone have suboptimal accuracy for 236 
AD as defined pathologically. Moreover, several non-amnestic cognitive presentations that are 237 
more common in younger patients, such as visual, language, or behavioral/dysexecutive 238 
variants, were shown to be due to AD neuropathology20. The lack of a close clinical-pathological 239 
relationship between clinical presentation and neuropathology (or biomarker) evidence for AD, 240 
requires us to recognize the pleomorphic clinical presentations of AD pathology, and, that in the 241 
setting of historically typical amnestic cognitive disorders, alternative brain pathologies could be 242 
relevant.  243 
 244 

Cognitive Disorder of Uncertain Etiology  245 

We will define “cognitive disorder of uncertain etiology” in this document (which is explicitly AD-246 
centric) when there are simultaneously features that are typical for AD pathology and features 247 
that are typical for non-AD pathology.  In the 1984 NINCDS-ADRDA criteria,18 this pattern of 248 
features that did not exclude AD but were not specific for AD was assigned a diagnosis of 249 
“possible AD.”   In the prior amyloid PET ,8 such symptom complexes were labeled as 250 
“unexplained.”  Advances in neuropathology and antemortem biomarker investigations have 251 
shed new light on this common situation. First, many clinical features – whether cognitive 252 
symptoms, non-cognitive symptoms, temporal profile, associated medical diagnoses, structural 253 
imaging features – are not as specific for one diagnosis as previously believed. Further, multi-254 
etiology cognitive disorders are more common than single etiology disorders21, so that striving to 255 
apply one and only one etiological diagnosis is conceptually naïve. While such a group of 256 
possible AD and unexplained MCI or dementia represents a very heterogeneous group, it is an 257 
important group for the current discussion of AUC for amyloid and tau PET.  258 
 259 

Dementia Expert 260 

The appropriate integration of amyloid and tau PET into the assessment of cognitive decline 261 
requires clinical expertise and experience in the evaluation of dementia. Consistent with 262 
previous AUC8,22, we define a “Dementia Expert” as a physician typically trained and board-263 
certified in neurology, psychiatry, or geriatric medicine who devotes a substantial proportion (at 264 
least 25%) of patient contact time to the evaluation and care of adults with acquired cognitive 265 
impairment or dementia. Physicians can self-identify as a Dementia Expert based on their 266 
training, knowledge base and clinical experience. Importantly, not all neurologists, psychiatrists 267 
or geriatricians are Dementia Experts, and conversely clinicians trained in other disciplines may 268 
possess the requisite expertise in dementia care. The guiding principles are that Dementia 269 
Experts should be: (1) skilled at evaluating, diagnosing and staging a broad spectrum of 270 
cognitive disorders; (2) familiar with the techniques of amyloid and tau PET (including their 271 
strengths and limitations); (3) able to interpret the meaning of amyloid and tau PET results in the 272 
broader clinical context of individual patients; and (4) able to communicate PET results and their 273 
implications for diagnosis and care to patients and families in a safe and effective manner, 274 
employing best practices for disclosure. 275 
 276 

 277 

4. Amyloid PET and Tau PET Technology, Radiotracers, and 278 

Interpretation   279 
 280 
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This section complements and updates information provided in the 2013 publication on the AUC 281 
for Amyloid PET8,22. PET is an established molecular imaging technique that is used to detect, 282 
measure, and map molecular targets in the living human, including the in vivo localization of 283 
aggregated proteins, such as amyloid plaques and tau neurofibrillary tangles.  This is possible 284 
because PET can measure the in vivo distribution of radioactive positron-emitting imaging 285 
agents, or radiopharmaceuticals, that bind selectively and specifically to the protein target.  The 286 
high sensitivity of PET enables measurement of picomolar in vivo concentrations, after 287 
intravenous administration of trace amounts of the radiopharmaceutical (or radioligand). In 288 
studies of neurodegeneration, carbon-11 and fluorine-18 are the positron-emitting radionuclides 289 
that are most often incorporated into pharmaceuticals, yielding radiopharmaceuticals with 290 
radioactive half-lives of about 20 minutes and 110 minutes, respectively.  The longer half-life of 291 
fluorine-18 enables widespread distribution and use of these radiopharmaceuticals beyond the 292 
manufacturing site.  293 
 294 
Carbon-11 Pittsburgh Compound-B (PiB) is a well-established  radiopharmaceutical23 that is 295 
widely used by research groups that can produce it on site.  PiB often serves as a reference 296 
standard to which other amyloid PET agents are compared.  Three fluorine-18 Aβ agents are 297 
approved by the U.S. Food and Drug Administration, European Medicines Agency, and other 298 
global regulatory agencies for clinical use “to estimate amyloid neuritic plaque density in adult 299 
patients with cognitive impairment who are being evaluated for AD and other causes of 300 
cognitive decline”:  18F-florbetapir (commercial name AmyvidTM), 18F-florbetaben (NeuraceqTM), 301 
and 18F-flutemetamol (VizamylTM).  A fourth fluorine-18 labelled agent that compares most 302 
closely to PiB in terms of tissue contrast is 18F-flutafuranol (formerly NAV4694). However, this 303 
radiopharmaceutical is not currently approved for clinical use in the U.S. or Europe. Figure 1 304 
illustrates the chemical structures of the above-listed amyloid tracers and of the tau tracer 18F-305 
flortaucipir (TauvidTM)7,24-27. The reader is referred to the SNMMI Procedure Standard/EANM 306 
Practice Guideline for Amyloid PET Imaging of the Brain28 for more information of how to 307 
perform an amyloid PET scan.  308 
 309 

 310 
Figure 1. Chemical structures of amyloid and tau radiotracers 311 
 312 
 313 
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The clinical interpretation of Amyloid PET scans is based primarily on visual interpretation 314 
methods approved by regulatory agencies following validation in PET-to-autopsy studies 315 
performed in end-of-life populations. In patients with absent-to-low density of amyloid plaque 316 
deposition, PET scans show only non-specific tracer retention in white matter. In patients with 317 
moderate-to-high density of amyloid plaques, tracer retention extends into neocortex (Figure 2). 318 
Earliest amyloid PET signal is often seen in posterior cingulate cortex, precuneus and frontal 319 
regions29, while widespread neocortical uptake is common by the time patients develop 320 
cognitive impairment. Each of the three FDA-approved amyloid radiotracers is visualized in 321 
different gray/white or color scales (Figure 2), and the specific criteria for scan positivity 322 
(including the specific regions investigated) differ slightly across the three agents.  323 
 324 
Table 1. 325 
 326 

Amyloid Agent Image Display Number of Regions for 
Positive Scan 

Florbetapir F 18  
370 MBq  
(10 mCi) 

Color Scale: Gray scale or inverse gray 
scale 
Regions: temporal, parietal (including 
precuneus), frontal, and occipital 

Two, or only one if gray 
matter uptake exceeds white 
matter uptake.   

Flutemetamol  F  18 
 
185 MBq (5 mCi) 

Color scale:  Rainbow or Sokoloff. Adjust 
the color scale to set the pons to 
approximately 90% maximum intensity.  
Regions: temporal, parietal, posterior 
cingulate/precuneus, frontal, striatum 

One  

Florbetaben F 18 
300 MBq (8.1 mCi) 

Color scale: gray scale or inverse gray 
scale. 
Regions: temporal, parietal, posterior 

cingulate/precuneus, and frontal 

One  

Tau Agent   

Flortaucipir F 18 
370 MBq (10 mCi) 

Color Scale:  
color scale with a rapid transition 
between two distinct colors and adjust 
the scale so that the transition occurs at 
the 1.65-fold threshold. Neocortical 
activity in either hemisphere contributes 
to image interpretation.  

A positive scan shows 
increased neocortical activity 
in posterolateral temporal 
(PLT), occipital, or 
parietal/precuneus region(s), 
with or without frontal 
activity. Neocortical activity in 
either hemisphere can 
contribute to identification of 
the positive pattern30,31.  

 327 
 328 
 329 
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 330 
Figure 2. Examples of positive and negative Aβ and tau PET scans with FDA approved 331 
radiotracers. SUVR images were created using pons (18F-flutemetamol) whole cerebellum (18F-332 
florbetaben, 18F-florbetapir) and inferior cerebellar gray matter (18F-flortaucipir) as reference 333 
regions. 334 
Each image is displayed in the approved gray/white or color scale for clinical interpretation. 335 
 336 
 337 
Quantification of amyloid PET is often performed in research studies and clinical trials. The most 338 
common quantitative measure is the standardized uptake value ratio (SUVR) which is the ratio 339 
of radiopharmaceutical uptake in a target region (e.g., neocortical regions that are known to 340 
accumulate amyloid plaques) divided by uptake in a nonspecific reference region that is 341 
relatively spared of pathology (e.g., cerebellum), measured at a time after injection when these 342 
ratios were shown to be stable (varies by radiotracer). The “Centiloid” scale can be used to 343 
standardize and compare amyloid PET quantification across radiotracers and image processing 344 
methods. In this scale, 0 Centiloids (CL) represents the average neocortical uptake in young 345 
cognitively unimpaired individuals who are very unlikely to have amyloid deposition, while 100 346 
CL represents the mean uptake in patients with mild-moderate dementia due to AD. Thresholds 347 
for scan positivity typically vary between 10-40 CL units, with lower thresholds increasing the 348 
sensitivity to detect early pathology.32-34Standardized imaging acquisition and processing is 349 
established for amyloid PET, and several commercial software packages that can be used to 350 
derive SUVR and CL outcomes were developed to assist with scan interpretation in clinical 351 
practice, though use of quantification is not currently included in the FDA labels.35 Future clinical 352 
use of amyloid PET quantification may be particularly important for objectively gauging 353 
longitudinal changes in amyloid burden in individual patients, e.g., to measure clinical response 354 
to an amyloid lowering therapy (see Clinical Scenario 15). 355 
 356 
Tau PET is currently performed using F-18 radiopharmaceuticals. 18F-Flortaucipir (FTP, 357 
commercial name: TauvidTM) was the first widely used tau agent, and in 2020 was granted FDA 358 
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approval “to estimate the density and distribution of aggregated tau NFTs for adult patients with 359 
cognitive impairment who are being evaluated for Alzheimer’s disease36.”  360 
Several additional tau-selective radiotracers were subsequently developed, including 18F-MK-361 
6240, 18F-RO69558948, 18F-GTP-1, 18F-PI-2620 and 18F-PM-PBB3 (also known as 18F-APN-362 
1607), although none have yet received FDA approval. All tau tracers were developed based on 363 
their ability to bind to AD-related neurofibrillary tangles. Most show absent-to-weak binding to 364 
non-AD tauopathies (e.g., progressive supranuclear palsy, corticobasal degeneration, chronic 365 
traumatic encephalopathy, molecular sub-types of frontotemporal dementia), though 18F-PI-366 
2620 and 18F-PM-PBB3 are currently being evaluated as broader spectrum tau imaging agents. 367 
Notably, 18F-PI2620 received orphan drug indication as a biomarker for tau deposition in 4-368 
repeat tauopathies (i.e., PSP and CBD). All tau tracers exhibit varying degrees and patterns of 369 
“off-target” binding (i.e., binding to non-tau targets), typically in basal ganglia, meninges, choroid 370 
plexus, and midbrain nuclei (substantia nigra and red nucleus). 371 
 372 
As with amyloid tracers, clinical interpretation of FTP tau PET scans is based on visual 373 
interpretation (Figure 2). A scan is interpreted as “negative AD tau pattern” if there is no 374 
neocortical tracer uptake, or if uptake is limited to the medial temporal, anterolateral temporal, or 375 
frontal cortex. A positive “AD pattern” is defined by extension of tracer retention into the 376 
posterolateral temporal or occipital cortex, with further extension into parietal cortex, posterior 377 
cingulate/precuneus cortex and frontal cortex seen in more advanced disease (Figure 2)36. In 378 
research studies, SUVR values are calculated to quantify tau PET uptake across radiotracers in 379 
various target regions of interest, with earliest signal typically detectable in entorhinal cortex and 380 
other medial temporal structures, followed by spread into inferior temporal gyrus (the latter 381 
usually occurring in the setting of positive amyloid PET). Efforts are underway to develop 382 
standardized quantitative tau PET scales across radiotracers and analytic approaches, 383 
analogous to the CL scale used for amyloid PET standardization37 . Tau PET quantification may 384 
enhance sensitivity for early-stage disease (e.g., Braak Stages III/IV)38, assist with disease 385 
staging39, and gauge longitudinal change in tau burden as a result of disease progression or in 386 
response to therapeutic interventions40. 387 
 388 
Standardized acquisition of the PET scans, following FDA labels, is necessary for reproducible 389 
results. High-quality training of readers is essential to ensure consistently accurate interpretation 390 
of amyloid and tau PET. As with all nuclear medicine imaging, readers also need to learn to 391 
recognize important technical or patient-related artifacts35.  392 

 393 

5. Neuropathologic Target of Amyloid and Tau PET Ligands  394 

 395 
At autopsy, amyloid plaques are visualized using thioflavin fluorescent dyes, silver impregnation 396 
techniques, or antibody-based immunohistochemistry. Neuritic plaques are the pathognomonic 397 
plaque type in AD that are morphologically defined by incorporation of dystrophic tau-positive 398 
neurites into the amyloid deposit41,42. The topographic distributions of amyloid plaque deposition 399 
and neurofibrillary tangle accumulation are used to assess the level of AD neuropathologic 400 
change, as reflected by the ‘ABC’ score in the NIA-AA neuropathologic guideline41,42. The 401 
Amyloid component is derived from topographic distribution of any plaque type using Thal 402 
amyloid phase 43 the tau component relies upon Braak tangle stage 44,45 and given the 403 
significance of neuritic plaques an additional amyloid component is accounted for by 404 
Consortium to Establish a Registry for Alzheimer's Disease (CERAD)  score46. The ABC score 405 
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integrates all three components to classify an individual as having “no,” “low,” “intermediate” or 406 
“high” AD neuropathologic change, with “intermediate-high” changes considered to be clinically 407 
relevant. 408 
 409 
Neuroimaging and neuropathology studies demonstrate common spatial patterns of amyloid 410 
deposition beginning in the neocortex, then involving limbic structures and diencephalon, and 411 
lastly found in cerebellum29,43,47-49. The topographic distribution of amyloid plaques is similar 412 
across different clinical presentations of AD (i.e., memory, dysexecutive, language, visuospatial 413 
predominant presentations)50-52.  414 
 415 
In typical AD, tau accumulation is first observed in the entorhinal cortex (Braak stages I-II), 416 
followed sequentially by involvement of limbic and paralimbic structures (Braak stages III-IV), 417 
association cortices (Braak stage V), and lastly primary cortices (i.e., primary sensorimotor, 418 
visual or auditory cortices, Braak stage VI)44,45 .Less commonly, the distribution of tangles 419 
presents instead with “hippocampal sparing” or “limbic predominant” patterns. “Hippocampal 420 
sparing AD” is defined by greater cortical involvement relative to limbic structures and is more 421 
commonly observed in patients presenting with an atypical, non-amnestic phenotype53,54. In 422 
direct contrast, limbic structures are greatly affected relative to cortex in “limbic predominant 423 
AD,” with the overwhelming majority of patients presenting with an amnestic phenotype. 424 
Different clinical variants of AD show distinct topographic densities of neurofibrillary tangles, 425 
with highest tangle densities found in the regions that are most clinically affected55. Studies with 426 
tau PET have replicated these three patterns of tau distribution in vivo56. 427 
 428 
FDA approval of amyloid and tau PET radiotracers was based on studies that compared visual 429 
interpretation of antemortem PET to the distribution of amyloid and tau aggregates at autopsy. 430 
The pivotal studies leading to regulatory approval were conducted in participants near the end 431 
of life, resulting in short (several months) intervals between PET and autopsy57-59. For amyloid 432 
tracers, majority visual reads of amyloid PET scans conducted with FDA-approved radiotracers 433 
were found to have 88%-98% sensitivity and 80%-95% specificity when compared to CERAD 434 
moderate-frequent neuritic plaques at autopsy. Studies that compared antemortem PET to Thal 435 
phase found scan positivity typically corresponded to Thal Phase 2-3. Thus, it is important to 436 
note that a negative scan does not equate to “no” amyloid deposition, though low levels of 437 
amyloid that are below the threshold of detection are much less likely to contribute to cognitive 438 
impairment60. Conversely, positive scans can be seen in patients who have diffuse amyloid 439 
plaque deposition (often seen in diffuse Lewy body disease) or cerebrovascular amyloid 440 
deposits (in cerebral amyloid angiopathy), but who do not meet neuropathologic criteria for 441 
intermediate-high AD neuropathological changes (ADNC). 442 
 443 
In the autopsy validation study of 18F-flortaucipir36, majority visual reads of antemortem PET 444 
scans showed 92% sensitivity and 80% specificity compared to Braak stage ≥ V neurofibrillary 445 
pathology. This degree of tau neuropathology is nearly always associated with cognitive 446 
impairment and Amyloid PET positivity. Therefore, a positive visual read of 18F-flortaucipir PET 447 
in isolation may be sufficient to “rule-in” a significant contribution of AD to cognitive impairment. 448 
However, when applying the visual read method described above, scans were visually read as 449 
consistent with AD in only ~20% of patients who died with Braak stage III-IV tau pathology, 450 
though this level represents the median Braak stage observed in patients who died at the MCI 451 
stage of impairment. Quantification of tau PET, particularly in medial temporal lobe, may 452 
enhance the sensitivity of the scan to earlier Braak stages38, but this is not performed routinely 453 
in clinical practice. The limited sensitivity of 18F-flortaucipir PET to early-stage disease due to 454 



13 
 

the visual read method used in the autopsy validation study may limit the clinical utility of the 455 
scan in patients with MCI or earlier clinical stages that are typically associated with less 456 
advanced tau pathology.  457 
 458 

6. Relation of Amyloid and Tau PET to other diagnostics  459 

 460 
6.1. Other nuclear medicine procedures  461 

PET with the radiolabelled glucose analogue 18F-fluorodeoxyglucose has been used to image 462 
regional cerebral glucose metabolism in a wide variety of neuropsychiatric diseases for over 463 
four decades. 18F-fluorodeoxyglucose (FDG)-PET can be helpful in the differential diagnosis of 464 
cognitive disorders by demonstrating characteristic patterns of glucose hypometabolism that are 465 
uniquely associated with characteristic underlying neuropathologies. The most common 18F-466 
FDG pattern in AD reveals hypometabolism in temporoparietal cortex, with prominent 467 
involvement of posterior cingulate cortex and precuneus. Frontal cortex is typically spared in 468 
early clinical stages. The anatomic pattern overlaps to a large extent with cortical atrophy seen 469 
on magnetic resonance imaging (MRI), but some studies suggest that 18F-FDG may be more 470 
sensitive than MRI at early disease stages, and patterns may be more apparent on qualitative 471 
reads for individual patients. 61 18F-FDG-PET has an established role in the diagnosis of 472 
frontotemporal dementia (FTD), demonstrating frontal or anterior temporal predominant 473 
hypometabolism (with sparing of posterior cortical regions) in behavioural or language variants 474 
of FTD. 61 In a head-to-head study of amyloid vs. 18F-FDG-PET in over 100 autopsy-confirmed 475 
cases (primarily AD and FTD), amyloid PET had higher sensitivity than 18F-FDG-PET for the 476 
presence of AD neuropathology with similar specificity, although both modalities performed 477 
similarly in determining the causative neuropathology62. 18F-FDG-PET can also be useful in 478 
evaluating dementia with Lewy bodies (DLB) with occipital hypometabolism and preserved 479 
metabolism in the posterior cingulate (“cingulate island sign”) helping to distinguish the 480 
metabolic pattern from that of AD. 63-65Characteristic patterns have also been reported in 481 
atypical parkinsonian syndromes, such as corticobasal degeneration, progressive supranuclear 482 
palsy and multiple system atrophy66. 483 
 484 
Presynaptic dopaminergic imaging, (e.g., 123I-DaTscan SPECT or 18F-FDOPA-PET) supports 485 
the differential diagnosis between DLB and AD by demonstrating loss of dopaminergic cells in 486 
the nigrostriatal pathway, with decreased radiotracer uptake in the putamen and caudate. There 487 
is ~80% sensitivity and about 92% specificity for the diagnosis of DLB compared to 488 
neuropathologic diagnoses obtained at autopsy61,67,68. However, presynaptic dopaminergic 489 
denervation can be present in neurodegenerative causes of parkinsonism other than DLB.  490 
 491 
Apart from the most commonly employed PET tracers, other PET tracers are being developed 492 
with high potential in dementia research. These include markers of neuroinflammation69,70 and 493 
synaptic density. 71PET radiotracers that bind to other protein aggregates associated with 494 
neurodegeneration, such as α-synuclein and TAR DNA-binding protein 43 (TDP-43), are 495 
currently in early stages of development72-74. 496 
 497 
6.2. Fluid biomarkers of Amyloid and tau  498 

Different isoforms of amyloid can be reliably measured in cerebrospinal fluid, where the levels of 499 
A42 are reduced by 40-60% in individuals with amyloid plaques compared with amyloid-500 
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negative controls, while CSF A40 levels do not discriminate patients with and without plaque 501 
deposition. CSF measures of total tau and phosphorylated tau (Phosphorylated tau [P-tau]; at 502 
residues 181 or 217) are elevated in patients with AD. Elevated total tau levels are not specific 503 
to AD, and are also seen in other conditions associated with neuronal injury, including stroke, 504 
traumatic brain injury and Creutzfeldt-Jakob disease. Elevated CSF P-tau181 and P-tau217 are 505 
more specific for AD, and may reflect amyloid-mediated changes in tau phosphorylation and 506 
secretion75,76.  507 
 508 
Numerous studies have shown a high concordance between amyloid-PET imaging and the CSF 509 
A42/A40 and A42/P-tau181 ratios (see e.g.77,78). These CSF ratios perform better than 510 
measuring concentrations of A42 or p-tau alone when predicting amyloid-PET status78,79. 511 
Across the AD continuum, CSF P-tau, especially P-tau217, is moderately associated with both 512 
the load of amyloid and tau PET80,81. Alternative tau assays, such as P-tau205 and (in 513 
particular) microtubule-binding region of tau at residue 243 (MTBR-tau243), may track better 514 
with neurofibrillary tangle deposition and tau PET82, but are not yet available outside of research 515 
studies.  516 
 517 
When using the clinically approved high precision CSF assays, the CSF A42/A40 (or A42 /p-518 
tau) ratio can predict the visual classification of amyloid-PET images with similar accuracy to 519 
quantitative assessments (SUVRs) of the same PET images.78Not surprisingly, amyloid-PET 520 
and CSF AD ratios detect early AD with similar accuracy, and there is no added value of 521 
combining the two measures to detect amyloid positivity.83 Fully automated CSF AD biomarker 522 
assays have recently been approved by the FDA and other regulatory authorities. 523 
 524 
In recent years there have been major advances in developing high precision plasma assays for 525 
AD biomarkers84. Mass spectrometry-based methods for quantification of Aβ42/Aβ40 in plasma 526 
have shown high correlation with CSF Amyloid biomarkers or amyloid-PET.85,86 However, the 527 
levels of plasma Aβ42/Aβ40 are decreased by only 8-15% in individuals with cerebral Amyloid 528 
pathology, compared to the 40%-60% decreases seen in CSF. Therefore, the robustness of 529 
plasma Aβ42/Aβ40 at the individual patient level may be suboptimal for clinical use87,88. In 530 
contrast, plasma P-tau levels (measured by high sensitivity immunoassays) are increased by 3-531 
7 times in cognitively impaired individuals with AD compared to cognitively unimpaired 532 
controls84.  Measurement of plasma tau phosphorylated at various epitopes, including P-tau181, 533 
P-tau217 and P-tau231, has high accuracy for differentiating cognitive impairment due to AD 534 
from cognitive impairment caused by other conditions, with plasma p-tau217 consistently 535 
showing the highest diagnostic performance89-95. Further, plasma p-tau217 can be used to 536 
predict future development of AD dementia in nondemented symptomatic96,97 and cognitively 537 
unimpaired individuals98,99. Several studies have also shown that plasma P-tau217 levels are 538 
highly concordant with amyloid PET positivity in both cognitively impaired individuals91,100,101 and 539 
those who are cognitively unimpaired91,102-104. Using mass spectrometry to measure the p-540 
tau217 to non-phosphorylated tau ratio (%p-tau217) can detect both amyloid PET and tau PET 541 
positivity with Areas Under the Receiver Operator Characteristics Curve of > 0.95. Further 542 
studies are needed to study how common medical co-morbidities, like kidney dysfunction or 543 
high body mass index affect plasma AD biomarker levels in different populations105. Current 544 
efforts are also underway to optimize plasma MTBR-tau243 as a fluid analog of tau PET106.  545 
 546 
While biofluid and PET measures of amyloid and tau can both be useful for diagnostic 547 
purposes, it is important to note that CSF and plasma measurements reflect the concentrations 548 
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of soluble forms of A42 and P-tau, whereas PET radiotracers bind to aggregated protein 549 
inclusions. Several studies suggest that changes in CSF and plasma amyloid and P-tau may be 550 
detectable earlier than PET changes.107,108 Although blood-based measures of amyloid, tau and 551 
neurodegeneration are promising, they are not yet approved by FDA for clinical use. For a 552 
comprehensive discussion on the current state of amyloid, P-tau and other blood-based 553 
biomarkers of neurodegeneration (e.g., neurofilament light-chain, glial fibrillary acidic protein, 554 
and others) see published Appropriate Use Recommendations10.  555 
 556 
 557 

7. Methods  558 

7.1. Composition of expert workgroup 559 

In June 2020, the AA and SNMMI convened a workgroup (hereinafter Workgroup) to update the 560 
AUC, with Avalere Health providing technical and editorial assistance. The Workgroup 561 
participated in teleconference meetings on a biweekly basis through August 2021. An additional 562 
one-time meeting was convened in August 2023 (see below). 563 
 564 
In alignment with the Institute of Medicine’s recommendations on group composition from its 565 
report Clinical Practice Guidelines We Can Trust, the AA and SNMMI established a 566 
multidisciplinary workgroup comprised of clinicians and other healthcare professionals with 567 
relevant expertise (list of members provided in Supplementary Appendix A)109. The 14 members 568 
included 4 neurologists (GDR, DK, OH, SS), 6 radiology/nuclear medicine physicians (JA, TB, 569 
KD, PHK, SM), 2 members double boarded in neurology and nuclear medicine (PH and KJ), 1 570 
PET imaging methodologist (JCP), 1 neuro-ethicist (JHL), 1 pathology and laboratory medicine 571 
biomarker researcher (MEM). Twelve of the members were from the United States and two 572 
were from Europe (Spain and Sweden). Each member has published extensively on topics 573 
related to the key considerations around the use of amyloid and tau PET, such as dementia 574 
research, clinical practice and ethics, and biomarker test validation and clinical utilization. 575 
 576 
7.2. Defining Scope and Key Research Questions  577 
 578 
The process began with the Workgroup defining the scope and parameters of the AUC and 579 
developing key research questions to guide a systematic review of available evidence on 580 
amyloid and tau PET using the PICOTS approach (population, interventions, comparisons, 581 
outcomes, timing, and settings framework).110 Supplementary Appendix B 582 
 583 
The Workgroup then developed a list of 17 clinical scenarios that are encountered in clinical 584 
practice based on key patient groups in whom amyloid and/or tau PET may be considered as 585 
part of the diagnostic process.  The Workgroup developed the clinical scenarios (Tables 2, 3 586 
Section 8) through a confidential and formalized process adapted from the RAND and University 587 
of California, Los Angeles approach for AUC development.111 The Workgroup began by 588 
reviewing the clinical scenarios in the 2013 amyloid PET AUC.8 The Workgroup refined and 589 
updated the previous scenarios and added several new ones. This resulted in an updated set of 590 
scenarios applicable for the consideration of amyloid and tau PET presented in this document. 591 
 592 
7.3. Systematic evidence review approach and findings 593 
 594 
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In a parallel effort, the Pacific Northwest Evidence-based Practice Center at Oregon Health & 595 
Science University (OHSU) conducted a systematic review of the literature. The primary 596 
purpose of the review was to summarize and assess the strength of evidence for the safety, 597 
diagnostic accuracy, and effect on patient outcomes of amyloid and tau PET, in cases posed in 598 
the key research questions listed in Supplementary Appendix C.  599 
 600 
Searches for the review were conducted using OvidMEDLINE without revisions (December 601 
2020) and supplemented with review of reference lists of relevant articles and systematic 602 
reviews. Database searches resulted in 3,238 potentially relevant articles. After dual review of 603 
abstracts and titles, 118 articles were selected for full-text dual review, and 18 studies (in 27 604 
publications) were determined to meet inclusion criteria and were included in this review. 605 
 606 
Two OHSU Evidence-based Practice Center staff reviewers independently assessed the quality 607 
of each study for inclusion. The strength of overall evidence was graded as high, moderate, low, 608 
or very low using the GRADE method (Grading of Recommendations, Assessment, 609 
Development, and Evaluations), based on the quality of evidence, consistency, directness, 610 
precision, and reporting bias. Specifically, we adapted criteria from the United States Preventive 611 
Services Task Force for randomized trials and cohort studies and from the Quality Assessment 612 
of Diagnostic Accuracy Studies112 for studies of diagnostic accuracy (Appendix D). 613 
Discrepancies were resolved through a consensus process. 614 
 615 
 616 
7.4. Rating of Clinical Scenarios 617 
 618 
Using the evidence summary, their clinical experience and expertise, and their knowledge of 619 
research outside of the scope of the evidence review, the Workgroup employed a modified 620 
Delphi approach to reach consensus on ratings for each of the clinical scenarios. This approach 621 
consisted of an online survey and 2 rounds of virtual scoring. When rating each scenario, 622 
Workgroup members were asked to assess the benefits and risks to patients of using amyloid 623 
and tau PET imaging for the diagnosis of AD. In each scoring round, members were asked to 624 
assign to each clinical scenario a rating within ranges of appropriate, uncertain, or rarely 625 
appropriate for use of amyloid or tau imaging. A rating scale of 1 to 9 was used in each of the 626 
scoring rounds. The rating scale was defined as follows:  627 
 628 
Score of 7 to 9, Appropriate: 629 

9 = Highly confident that the scenario is appropriate 630 
8 = Moderately confident that the scenario is appropriate 631 
7 = Only somewhat confident that the scenario is appropriate   632 

 633 

Score of 4 to 6, Uncertain: 634 

6 = Uncertain, but possibility that the scenario is appropriate  635 
5 = Uncertain, evidence is inconclusive or lacking  636 
4 = Uncertain, but possibility that the scenario is rarely inappropriate 637 

 638 
Score of 1 to 3, Rarely Appropriate: 639 

3 = Only somewhat confident that the scenario is rarely appropriate 640 
2 = Moderately confident that scenario is rarely appropriate 641 
1 = Highly confident that the scenario is rarely appropriate 642 

 643 
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After each round of voting, resulting ratings given for each indication were tabulated and 644 
reported to the Workgroup. When an indication received all 14 Workgroup members’ ratings in a 645 
single category of Appropriate, Uncertain, or Rarely Appropriate, that indication was considered 646 
to have reached consensus rating and was removed from the next round of voting. When voting 647 
for an indication resulted in all but one vote falling into the same category, that vote was 648 
considered an outlier and removed from the ratings.   649 
 650 
The first round of voting was an anonymous online survey in which each member was asked to 651 
assign a single rating to each indication and enter a rationale for that rating. Workgroup 652 
members were then brought together for a series of 5 virtual meetings to complete the Delphi 653 
process. The virtual meetings began with a presentation of the first-round survey rating results 654 
and rationales. After extensive discussion, a second round of online voting was collected and 655 
tabulated. The results were reported to the Workgroup for further discussion.  In this final round 656 
of deliberation, the Workgroup reached consensus on each indication, with all members rating 657 
the remaining indications as falling within the same category of Appropriate, Uncertain, or 658 
Rarely Appropriate.   659 
 660 
7.5. Revisiting Clinical Scenarios involving AD therapeutics. 661 
 662 
Significant advances in AD therapeutics occurred following the initial round of scenario scoring 663 
and prior to publication of these updated AUC. These include the publication of positive pivotal 664 
phase 3 clinical trials of the anti-amyloid monoclonal antibodies lecanemab113 and 665 
donanemab39, and traditional FDA approval of lecanemab in July 2023. Given the prominent 666 
role of amyloid PET (and to a lesser degree tau PET) in the clinical trials and future 667 
implementation of these therapies in clinical practice, the Workgroup reconvened in August 668 
2023 to re-vote on Clinical Scenarios 14 and 15 which pertain to appropriateness of amyloid 669 
and tau PET to evaluate eligibility for, or monitoring response to, anti-amyloid therapeutics. 670 
Changes in scenario rankings between August 2021 and August 2023 are described in the text. 671 
 672 

8. Appropriate Use Criteria for Amyloid and Tau PET Clinical 673 

Scenarios 674 

8.1 Criteria for Clinical Scenarios  675 

The following general principles served as the “litmus test” for appropriateness of amyloid or tau 676 
imaging across all clinical scenarios:  677 

i) AD is considered as a likely etiology of cognitive impairment, but the etiology 678 
remains uncertain after a comprehensive evaluation by a dementia expert. 679 

ii) Knowledge of the presence or absence of amyloid tau pathology is expected to help 680 
establish the etiology of impairment and alter management. 681 

The Workgroup recommends that these principles be met in all patients referred for clinical 682 
amyloid/tau PET, across all clinical scenarios. 683 

 684 
Anticipated impact on patient care  685 

The guiding principle for clinicians considering amyloid and tau PET is that the results of these 686 
studies should have a direct impact on patient care by aiding diagnosis of the cause of cognitive 687 
decline and thus guide patient management. Establishing the cause of impairment can inform 688 
the care plan in a variety of ways, including:  689 
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1) Determining eligibility for drug treatment (e.g. approved and emerging molecular-690 
specific therapies for AD, and approved AD symptomatic treatments that are not 691 
indicated in other disorders). 692 

2) Counseling the patient and family regarding prognosis.  693 
3) Reducing the need for alternative diagnostic tests for AD (e.g. CSF biomarkers) or 694 

initiating a work-up for non-AD conditions. 695 
4) Helping inform decisions about patient safety (e.g., independent living, driving) and 696 

future planning (e.g. initiating or activating advance directives).  697 

The Workgroup strongly emphasized the “value of knowing” in patients seeking care for 698 
cognitive changes114,115, beyond concrete changes in patient management. Furthermore, 699 
amyloid and tau PET results can determine if a patient is eligible to participate in clinical 700 
research studies, including clinical trials.  701 

In evaluating the utility of amyloid and tau PET, clinicians should consider patient-specific 702 
factors such as stage of impairment and age. Generally speaking, determining amyloid and tau 703 
status is more useful in early stages of impairment, and may be less impactful in patients 704 
already suffering from moderate-to-severe dementia. While tau PET positivity is more strongly 705 
linked to cognitive symptoms, the prevalence of amyloid PET positivity increases with age in 706 
cognitively unimpaired people, ranging in prevalence from ~10% at age 50 to ~45% at age 707 
90116,117. In each age strata, the likelihood of amyloid PET positivity is 2-3 times higher in 708 
individuals who carry one or more copies of the apolipoprotein E ε4 risk allele (APOE4) than in 709 
APOE4 non-carriers. Therefore, while a negative amyloid PET is always useful for ruling-out 710 
AD, the clinical relevance of a positive scan should take into account a patient’s cognitive 711 
status, age, and the baseline prevalence of amyloid positivity in similarly aged, unimpaired 712 
individuals.  713 

The decision to pursue amyloid or tau PET should result from shared decision-making between 714 
the ordering clinician, patient, and family, and should take into account the patient and family’s 715 
desire to know amyloid/tau status in light of each possible test outcome (including positive, 716 
negative, or indeterminate results). While current data, obtained primarily in research settings, 717 
suggest that amyloid PET results can be disclosed safely and do not typically cause 718 
psychological harm, the individual mental health circumstances and support networks of the 719 
imaging candidate should be considered. Finally, as insurance coverage for amyloid and tau 720 
PET remains uncertain for many patients, the decision-making process should address the 721 
potential for co-payment and other out-of-pocket costs118,119. 722 

 723 
While the Workgroup sought to highlight the most common clinical scenarios under which 724 
amyloid and tau PET may be considered, a limited number of standardized scenarios can never 725 
capture the heterogeneity of patients in clinical practice, nor convey the complexity of clinical 726 
decision making for individual patients. Therefore, the criteria presented here should be 727 
considered as guidelines for clinicians, but not as a substitute for careful clinician judgment that 728 
considers the full clinical context for each patient presenting with cognitive complaints. In 729 
developing the scenarios, the Workgroup considered the degree to which PET results would 730 
inform patient diagnosis and care based on available literature most relevant to the scenario’s 731 
clinical circumstance. 732 
 733 
8.2 Clinical Scenarios and Appropriateness Ratings for Amyloid and Tau PET Imaging 734 
 735 
The appropriateness scores (based on majority vote on the appropriateness scale at the 736 
conclusion of the Delphi process) for each clinical scenario are presented in Table 2. The 737 
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overall categorizations of each scenario as “appropriate,” “uncertain,” or “rarely appropriate” for 738 
each modality are presented in Table 3. It is important to note that each of the ratings for the 739 
clinical scenarios presented below reflect the level of appropriate use of each modality by itself: 740 
amyloid imaging independent or in absence of tau imaging, and tau imaging independent or in 741 
absence of amyloid imaging. The use of both modalities in combination is discussed later in the 742 
document (see Section 9). Additionally, while several studies have evaluated the clinical impact 743 
of amyloid PET, there is a paucity of data about clinical uses of tau PET, which to date has 744 
primarily been used in research studies. As a result, Workgroup recommendations regarding tau 745 
PET were often based on expert opinion and are not yet supported by empiric evidence. 746 
Therefore, the Workgroup generally had lower confidence in the appropriateness of tau PET in 747 
most scenarios. 748 
 749 
Table 2: Clinical Scenarios and Appropriateness Ratings for Amyloid and Tau PET Imaging 750 

Clinical Scenario   Rating  
  

Amyloid PET Tau PET 

Clinical Scenario #1: Patients who are cognitively unimpaired who are 
not considered to be at increased risk for AD based on age, known 
APOE ɛ4 genotype, or multigenerational family history  

1    1   

Clinical Scenario # 2: Patients who are cognitively unimpaired but 
considered to be at increased risk for AD based on age, 
known APOE ɛ4 genotype, or multigenerational family history   

2   1   

Clinical Scenario # 3: Patients with subjective cognitive decline 
(cognitively unimpaired based on objective testing) who are not 
considered to be at increased risk for AD based on age, known APOE ɛ4 
genotype, or multigenerational family history  

2   1   

Clinical Scenario # 4: Patients with subjective cognitive decline 
(cognitively unimpaired based on objective testing) who are considered to 
be at increased risk for AD based on age, known APOE ɛ4 genotype, or 
multigenerational family history  

6   2   

Clinical Scenario # 5: Patients presenting with mild cognitive impairment 
or dementia syndrome who are below 65 years and in whom AD 
pathology is suspected  

9 8 

Clinical Scenario # 6: Patients presenting with mild cognitive impairment 
or dementia syndrome which is often consistent with AD pathology 
(amnestic presentation) with onset at 65 years of age or older  

8 6 

Clinical Scenario # 7: Patients presenting with mild cognitive impairment 
or dementia syndrome that could be consistent with AD pathology but has 
atypical features (e.g., non-amnestic clinical presentation, rapid or slow 
progression, etiologically mixed presentation)  

8 7 

Clinical Scenario # 8: To determine disease severity or track disease 
progression in patients with an established biomarker-supported diagnosis 
of mild cognitive impairment or dementia due to AD pathology   

1 4 

Clinical Scenario # 9: Patients presenting with prodromal Lewy Body 
disease or dementia with Lewy Bodies.  

2 
4 

Clinical Scenario # 10: Patients with MCI or dementia with recent CSF 
biomarker results that are conclusive (whether consistent or not consistent 
with underlying AD pathology)  

3 6 

Clinical Scenario # 11: Patients with MCI or dementia with equivocal or 
inconclusive results on recent CSF biomarkers  

8 6 

Clinical Scenario # 12: To inform the prognosis of patients presenting 
with mild cognitive impairment due to clinically suspected AD pathology  8 7 
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Clinical Scenario   Rating  
  

Amyloid PET Tau PET 

Clinical Scenario # 13: To inform the prognosis of patients presenting 
with dementia due to clinically suspected AD pathology  4 7 

Clinical Scenario # 14: To determine eligibility for treatment with 
an approved amyloid targeting therapy   9* 

 
8*  

Clinical Scenario # 15: To monitor response among patients that have 
received an approved amyloid targeting therapy  

8* 5 

Clinical Scenario # 16: Non-medical usage (e.g., legal, insurance 
coverage, or employment screening)  

1 1 

Clinical Scenario # 17: In lieu of genotyping for suspected autosomal 
dominant mutation carriers   

1  1 

*Score of 1- 3 is Rarely Appropriate, Score of 4 - 6 is Uncertain, Score of 7- 9 is Appropriate 751 

 * - Scores reflect revoting in August 2023. See text for more details. Table 3.  752 

Clinical Scenarios for Amyloid PET Rating 

 

Appropriate 

Clinical Scenario # 5: Patients presenting with mild cognitive impairment or dementia who 
are below 65 years and in whom AD pathology is suspected  

9 

Clinical Scenario # 6: Patients presenting with mild cognitive impairment or dementia 
syndrome which is often consistent with AD pathology (amnestic presentation) with onset at 
65 years of age or older  

8 

Clinical Scenario # 7: Patients presenting with mild cognitive impairment or dementia 
syndrome that could be consistent with AD pathology but has atypical features (e.g., non-
amnestic clinical presentation, rapid or slow progression, etiologically mixed presentation)  

8 

Clinical Scenario # 11: Patients with MCI or dementia with equivocal or inconclusive 
results on recent CSF biomarkers  

8 

Clinical Scenario # 12: To inform the prognosis of patients presenting with mild cognitive 
impairment due to clinically suspected AD pathology  

8 

Clinical Scenario # 14: To determine eligibility for treatment with an approved amyloid 
targeting therapy   

9* 
 

Clinical Scenario # 15: To monitor response among patients that have received an 
approved amyloid targeting therapy  

8* 

Uncertain 

Clinical Scenario # 4: Patients with subjective cognitive decline (cognitively unimpaired 
based on objective testing) who are considered to be at increased risk for AD based on age, 
known APOE ɛ4 genotype, or multigenerational family history  

6 

Clinical Scenario # 13: To inform the prognosis of patients presenting with dementia due to 
clinically suspected AD pathology  

4 

Rarely Appropriate 

Clinical Scenario #1: Patients who are cognitively unimpaired who are not considered to be 
at increased risk for AD based on age, known APOE ɛ4 genotype, or multigenerational 
family history  

1 

Clinical Scenario # 2: Patients who are cognitively unimpaired but considered to be at 
increased risk for AD based on age, known APOE ɛ4 genotype, or multigenerational 
family history   

2 

Clinical Scenario # 3: Patients with subjective cognitive decline (cognitively unimpaired 
based on objective testing) who are not considered to be at increased risk for AD based on 
age, known APOE ɛ4 genotype, or multigenerational family history  

2 

Clinical Scenario # 8: To determine disease severity or track disease progression in 
patients with an established biomarker-supported diagnosis of mild cognitive impairment or 
dementia due to AD pathology   

1 

Clinical Scenario # 9: Patients presenting with prodromal Lewy Body disease or dementia 
with Lewy Bodies.  

2 
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Clinical Scenario # 10: Patients with MCI or dementia with recent CSF biomarker results 
that are conclusive (whether consistent or not consistent with underlying AD pathology)  

3 

Clinical Scenario # 16: Non-medical usage (e.g., legal, insurance coverage, or 
employment screening)  

1 

Clinical Scenario # 17: In lieu of genotyping for suspected autosomal dominant mutation 
carriers   

1 

 753 
 754 

Clinical Scenarios for Tau PET Rating 

 

Appropriate 

Clinical Scenario # 5: Patients presenting with mild cognitive impairment or dementia who 
are below 65 years and in whom AD pathology is suspected  

8 

Clinical Scenario # 7: Patients presenting with mild cognitive impairment or dementia 
syndrome that could be consistent with AD pathology but has atypical features (e.g., non-
amnestic clinical presentation, rapid or slow progression, etiologically mixed presentation)  

7 

Clinical Scenario # 12: To inform the prognosis of patients presenting with mild cognitive 
impairment due to clinically suspected AD pathology  

7 

Clinical Scenario # 13: To inform the prognosis of patients presenting with dementia due to 
clinically suspected AD pathology  

7 

Clinical Scenario # 14: To determine eligibility for treatment with an approved amyloid 
targeting therapy   

8* 

Uncertain 

Clinical Scenario # 6: Patients presenting with mild cognitive impairment or dementia 
syndrome which is often consistent with AD pathology (amnestic presentation) with onset at 
65 years of age or older  

6 

Clinical Scenario # 8: To determine disease severity or track disease progression in 
patients with an established biomarker-supported diagnosis of mild cognitive impairment or 
dementia due to AD pathology   

4 

Clinical Scenario # 9: Patients presenting with prodromal Lewy Body disease or dementia 
with Lewy Bodies.  

4 

Clinical Scenario # 10: Patients with MCI or dementia with recent CSF biomarker results 
that are conclusive (whether consistent or not consistent with underlying AD pathology)  

6 

Clinical Scenario # 11: Patients with MCI or dementia with equivocal or inconclusive 
results on recent CSF biomarkers  

6 

Clinical Scenario # 15: To monitor response among patients that have received an 
approved amyloid targeting therapy  

5 

Rarely Appropriate 

Clinical Scenario #1: Patients who are cognitively unimpaired who are not considered to be 
at increased risk for AD based on age, known APOE ɛ4 genotype, or multigenerational 
family history  

1 

Clinical Scenario # 2: Patients who are cognitively unimpaired but considered to be at 
increased risk for AD based on age, known APOE ɛ4 genotype, or multigenerational 
family history   

1 

Clinical Scenario # 3: Patients with subjective cognitive decline (cognitively unimpaired 
based on objective testing) who are not considered to be at increased risk for AD based on 
age, known APOE ɛ4 genotype, or multigenerational family history  

1 

Clinical Scenario # 4: Patients with subjective cognitive decline (cognitively unimpaired 
based on objective testing) who are considered to be at increased risk for AD based on age, 
known APOE ɛ4 genotype, or multigenerational family history  

2 

Clinical Scenario # 16: Non-medical usage (e.g., legal, insurance coverage, or 
employment screening)  

1 

Clinical Scenario # 17: In lieu of genotyping for suspected autosomal dominant mutation 
carriers   

1 

*Score of 1- 3 is Rarely Appropriate, Score of 4 - 6 is Uncertain, Score of 7- 9 is Appropriate 755 

* - Scores reflect revoting in August 2023. See text for more details. 756 
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8.3 Rationale for Clinical Scenario Appropriateness Ratings 757 
 758 

Clinical Scenario 1  759 
“Patients who are cognitively unimpaired who are not considered to be at increased risk for AD 760 
based on age, known APOE ɛ4 genotype, or multigenerational family history.” 761 
 762 
Consensus ratings  763 

 Amyloid = 1 (Highly confident that the clinical scenario is rarely appropriate) 764 
Tau = 1 (Highly confident that the clinical scenario is rarely appropriate) 765 
 766 
Amyloid 767 
This scenario refers to cognitively unimpaired individuals (Section 3, Key Definitions) who are not 768 
at heightened risk of developing AD based on their age, APOE genotype or family history. As 769 
discussed above, a significant minority of such individuals will have positive amyloid PET scans. 770 
This “pre-clinical” stage of AD is an area of active investigation in both observational research and 771 
drug trials aimed at the prevention of future cognitive decline. Group-level analyses clearly indicate 772 
that amyloid PET-positive cognitively unimpaired individuals show accelerated cognitive decline 773 
compared to amyloid PET-negative cognitively unimpaired individuals, and are at heightened risk 774 
of developing MCI or dementia120-122 (see Further Research Questions). However, at the individual 775 
patient level, there remains significant uncertainty about cognitive outcomes, and many amyloid-776 
positive individuals do not develop clinically meaningful cognitive impairment even with relatively 777 
extended follow-up123. Currently, the uncertain clinical utility outweighs any benefits, although 778 
availability of proven preventive therapies would undoubtedly alter this judgment.  Consequently, 779 
the Workgroup classified this indication as “Rarely Appropriate” (rating=1). 780 

 781 
Tau 782 
The vast majority of cognitively unimpaired individuals will show either completely negative tau 783 
PET or retention limited to the medial temporal lobe but sparing the neocortex; this is insufficient 784 
for a positive tau PET read based on the FDA-approved visual read criteria (Section 4, Figure 2)124-785 
127. Tau PET uptake outside the medial temporal lobe is exceedingly rare in individuals who are 786 
amyloid PET negative. Emerging data suggest that individuals who are positive on both amyloid 787 
and tau PET are at higher risk of imminent cognitive decline compared to patients who are positive 788 
on just one of the two scans, or negative on both [81-83]. Up to 50% of amyloid-negative 789 
individuals show isolated tau PET uptake in the medial temporal lobe, and these individuals as a 790 
group show slower clinical decline compared to those with medial temporal tau and amyloid PET 791 
positivity128

. Clearly, there is much yet to learn in terms of how best to apply tau PET along the 792 
continuum of cognitive functioning, alone and in tandem with amyloid imaging.  Based on the 793 
paucity of data, especially regarding individual patient risk, the Workgroup classified tau PET as 794 
“Rarely Appropriate” in this scenario (rating=1). 795 
 796 
Clinical Scenario 2 797 
“Patients who are cognitively unimpaired but considered to be at increased risk for AD based on 798 
age, known APOE ɛ4 genotype, or multigenerational family history.” 799 

 800 
Consensus rating  801 
 Amyloid = 2 (Moderately confident that the clinical scenario is rarely appropriate) 802 
 Tau = 1 (Highly confident that the clinical scenario is rarely appropriate) 803 

 804 
Amyloid 805 
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Amyloid positivity is associated with age, family history and APOE ɛ4 genotype117,129. Furthermore, 806 
age and APOE4 genotype increase the risk of developing MCI or dementia in cognitively 807 
unimpaired individuals who are amyloid PET-positive129-131. These individuals may be more likely 808 
to seek memory specialist care to determine their risk of developing AD based on a family history 809 
or known genetic risk, as APOE testing is available through several straight-to-consumer genetic 810 
testing platforms. Current recommendations to ameliorate AD risk involve lifestyle factors that 811 
highlight the importance of physical, cognitive and social activity, diet, and adequate sleep, as well 812 
as optimizing treatment of vascular risk factors. These recommendations are universal regardless 813 
of an individual’s risk of AD or amyloid status. As a result, the Workgroup concluded that amyloid 814 
PET would be “Rarely Appropriate” in this scenario, acknowledging that this is an evolving clinical 815 
decision point impacted by the need to know and by the possibility of future preventive 816 
pharmacologic interventions (rating=2).  817 
 818 
Tau 819 
As described above in scenario 1, currently available information about the utility of tau PET in this 820 
scenario is limited. The Workgroup concluded that tau PET is “Rarely Appropriate” in this scenario 821 
(rating=1). 822 
 823 
Clinical Scenario 3 824 
“Patients with subjective cognitive decline (cognitively unimpaired based on objective testing) 825 
who are not considered to be at elevated risk for AD based on age, known APOE ɛ4 genotype, 826 
or multigenerational family history.” 827 
 828 
Consensus ratings:  829 

Amyloid = 2 (Moderately confident that scenario is rarely appropriate) 830 
Tau = 1 (Highly confident that scenario is rarely appropriate) 831 

 832 
Amyloid 833 
Subjective Cognitive Decline (SCD) (Section 3, Key Definitions132) is very common. 133In 834 
general, having SCD doubles the risk of developing mild cognitive impairment, 134,135but the time 835 
lag from detection of SCD to MCI averaged 9.4 years (standard deviation 12.1 years) in one 836 
study. 136In another cohort, incident MCI occurred in only 4/318 (1%) of SCD participants after 837 
24 months136. Persons with SCD who seek evaluation in a memory clinic may be at higher risk 838 
of decline than individuals with SCD in the general population137. The clinically defined construct 839 
of SCD covers a surprisingly wide spectrum of phenomena that could be construed as 840 
representing a change from prior level of function. Some134 but not all studies show that carriage 841 
of an APOE e4 allele increases risk of decline. Higher age, especially over age 80 years, is 842 
predictive of greater risk. On clinical grounds, the greater the consistency and breadth of 843 
cognitive complaints, the higher the likelihood of subsequent development of MCI. 135Because 844 
of the long delay to and the highly variable likelihood of developing objective cognitive 845 
impairment, and the frequent presence of amyloid in an otherwise “normal” population, 846 
biomarker evidence of risk in SCD is necessarily of less certain prognostic value. Prognostic 847 
value of imaging biomarkers for AD in SCD is a complex function of length of the time horizon, 848 
age and the presence of comorbidities. 849 
 850 
Compared to cognitively unimpaired persons, elevated amyloid is at least as common among 851 
persons >65 years old with SCD and may be slightly (but not dramatically) higher138-141, is 852 
probably an interaction between the magnitude of SCD and amyloid burden142,143, and elevated 853 
amyloid in this setting might predict more cognitive impairment144. The Workgroup members, in 854 
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noting that elevated amyloid conveyed little prognostic information and no actionable preventive 855 
interventions in persons with SCD who lacked an APOE e4 allele or multigenerational family 856 
history, felt that amyloid imaging was “Rarely Appropriate” (rating =2). 857 
 858 
Tau 859 
Because elevations in tau PET are so closely tied to the degree of cognitive impairment, the 860 
probability of meaningfully elevated tau PET (outside of the medial temporal lobe) is very low in 861 
persons with SCD125 who by definition have normal objectively measured cognition. Therefore, 862 
tau PET was considered by the Workgroup to be “Rarely Appropriate” (rating = 1). 863 
 864 
Clinical Scenario 4  865 
“Patients with subjective cognitive decline (cognitively unimpaired based on objective testing) 866 
who are considered to be at increased risk for AD based on age, known APOE ɛ4 genotype, or 867 
multigenerational family history.” 868 
 869 
Consensus ratings:  870 

Amyloid = 6 (Uncertain, but possibility that the scenario is appropriate) 871 
Tau = 2 (Moderately confident that scenario is rarely appropriate) 872 

 873 
Amyloid 874 
As discussed in Scenario 3, persons with SCD who are older, carry the APOE ɛ 4 risk allele or 875 
have a multigenerational family history are at higher risk of developing MCI/dementia. In these 876 
individuals, SCD is more likely to represent the very earliest symptomatic stages of AD. Both 877 
positive and negative amyloid PET results may be informative to these individuals. 878 
Nevertheless, the degree of individual risk and the time-course for developing impairment are 879 
highly uncertain83,120,130,137 ending clinical trial results in this population, preventive measures 880 
are limited to generally applicable lifestyle and health recommendations. Balancing these 881 
competing factors, the Workgroup was ultimately uncertain but endorsed the possibility that 882 
amyloid PET may be appropriate in this scenario (rating = 6). 883 
 884 
Tau 885 
Even in persons with risk factors such as older age, APOE e4 genotype or multigenerational 886 
family history, the probability of meaningfully elevated tau outside of the medial temporal lobe is 887 
very low in persons with SCD139 who by definition have normal objectively-measured cognition. 888 
Therefore, tau PET was considered by the Workgroup to be “Rarely Appropriate” (rating = 2). 889 
 890 
Clinical Scenario 5  891 
“Patients presenting with mild cognitive impairment or dementia who are below 65 years and in 892 
whom AD pathology is suspected.” 893 
 894 
Consensus ratings:   895 

Amyloid = 9 (Highly confident that the indication is appropriate) 896 
Tau = 8 (Moderately confident that scenario is appropriate) 897 
 898 

Amyloid 899 
Young-onset dementia or MCI is defined as individuals who present with cognitive impairment 900 
before the age of 65.145 A recent meta-analysis identified the prevalence of young-onset 901 
dementia in ages 30-64 to be 119.0 per 100,000 persons, with AD the leading cause, followed 902 
by frontotemporal dementia and vascular dementia.146 Although the age cutoff of 65 is arbitrary, 903 
neuropathologic evidence suggests greater amyloid and tau burden in younger than older 904 
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individuals affected by AD.147,148 As these working-aged individuals are in the prime of their life 905 
and are often supporting families, accurately diagnosing the cause of impairment is particularly 906 
important. The greater frequency of atypical (non-amnestic) clinical presentations in young-907 
onset AD,53 involving initial impairment in executive, language, visual, and (more rarely) 908 
behavior or motor function, often lead to delays in diagnosis or misdiagnosis that impacts 909 
treatment.149,150 Given the lower frequency of co-existing pathologies in young-onset AD 910 
brains,151 this population may be more likely to benefit from specific therapeutic agents targeting 911 
Amyloid and tau. 912 
 913 
Amyloid PET is highly accurate in detecting AD neuropathology in patients with young-onset 914 
impairment.  Rates of amyloid positivity are much lower in this age group in cognitively 915 
unimpaired people or patients with other neurodegenerative syndromes.62,117,152 Conversely, in 916 
patients presenting clinically with an amnestic dementia, the prevalence of amyloid PET 917 
positivity decreases with increasing age due to a higher prevalence of non-AD neuropathologies 918 
that affect the medial temporal lobe (e.g., limbic-associated TDP-43 919 
encephalopathy[LATE]).117,153 Taken together, in the setting of a clinical syndrome suggestive of 920 
AD, amyloid PET positivity in young-onset dementia and MCI can be very helpful for ruling-in 921 
AD as the underlying neuropathology. Overall, the Workgroup concluded that amyloid PET is 922 
appropriate in this scenario (rating = 9). 923 
 924 
Tau 925 
Similarly, tau PET can be very helpful in detecting AD pathology in young-onset AD, with higher 926 
overall intensity and spatial spread of radiotracer retention compared to older patients at a 927 
similar disease stage.154 Young-onset AD patients are more likely to be in advanced Braak 928 
stages of neurofibrillary pathology even at the MCI stage154 increasing the likelihood of a 929 
positive tau PET scan.36,155,156 Furthermore, variability in tau PET retention patterns closely 930 
mirror the variability seen in neurodegeneration patterns (via MRI or 18F-FDG-PET) in young-931 
onset AD.152,157,158 Overall, based on current evidence the Workgroup concluded that tau PET is 932 
appropriate in this scenario (rating = 8). 933 
 934 
Clinical Scenario 6  935 
 936 
“Patients presenting with mild cognitive impairment or dementia syndrome which is often 937 
consistent with AD pathology (amnestic presentation) with onset at 65 years of age or older.” 938 
 939 
Consensus Ratings:  940 

Amyloid = 8 (Moderately confident that scenario is appropriate) 941 
Tau = 6 (Uncertain, but possibility that scenario is appropriate) 942 
 943 

Amyloid 944 
This scenario addresses cognitively impaired older adults who meet clinical criteria for MCI or a 945 
dementia syndrome that is amnestic in presentation and otherwise consistent with AD. In the 946 
original amyloid PET AUC, it was felt that amyloid PET would not add much value in individuals 947 
with dementia who have symptoms and an age-of-onset that is typical of AD12.  However, 948 
subsequent reports from both observational studies and drug trials reported that 15% - 20% of 949 
individuals clinically diagnosed with late-onset probable AD dementia (including ~35% of 950 
APOE4-negative individuals) have negative amyloid PET159,160. Interestingly, the prevalence of 951 
amyloid PET positivity decreases with older age in patients with clinically typical amnestic 952 
dementia, likely reflecting an increasing prevalence of non-AD pathologies (e.g., vascular, 953 
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LATE) that can mimic AD clinically117. The rates of amyloid PET positivity in late-onset MCI 954 
range from 45%-70%161, increasing with age and APOE ɛ4 genotype. Thus, there is almost 955 
always diagnostic uncertainty about the contribution of AD at the MCI stage. As discussed 956 
earlier, amyloid positivity is also common in cognitively unimpaired older adults and may be less 957 
specific among older patients in general. With advanced age comes an increasing likelihood 958 
that medical comorbidities and/or other co-existing pathologies (including overlapping 959 
neurodegenerative diseases) are contributing to the clinical presentation of cognitive 960 
impairment.21 Nevertheless, a positive scan can, by virtue of satisfying the biomarker criteria 961 
required for a diagnosis of AD in persons with MCI or dementia, reduce the need for further 962 
diagnostic testing and heighten confidence in the management approach. In contrast, a 963 
negative scan can serve to rule out AD pathology as a cause of the observed impairment, 964 
triggering an alternative course for the diagnostic work-up and resulting management plan. In 965 
the Imaging Dementia-Evidence for Amyloid Scanning (IDEAS) study, amyloid PET was positive 966 
in 55.3% of patients with MCI over age 65 and led to changes in patient management in 60.2% 967 
of MCI patients159. Based on these data, the Workgroup concluded that amyloid PET is 968 
appropriate in this scenario (rating = 8). 969 
 970 
Tau 971 
The Workgroup acknowledged the mounting data supporting the accuracy of tau PET for 972 
identifying pathological changes of AD and the high predictive value (i.e., correlation with a 973 
histopathologic reference standard) of such findings for patients presenting with dementia.36,155 974 
However, given the evidence that a positive 18F-flortaucipir (FTP)  tau PET (as rated by FDA-975 
approved visual read criteria) reliably detects primarily advanced stages of tau pathology (Braak 976 
stages V-VI), a negative FTP tau PET visual read does not exclude the presence of clinically 977 
meaningful tau pathology (i.e., Braak stages III-IV), which represents the median tau pathology 978 
seen at autopsy in patients who died with MCI as well as in some patients who died with 979 
dementia155. Contrary to amyloid PET, the positive predictive value of FTP tau PET in patients 980 
with MCI or dementia is high, while the negative predictive value is uncertain, especially in older 981 
patients who may develop impairment at lower levels of tau pathology. The Workgroup also 982 
acknowledged the need for additional research on the utility of tau PET for clinical decision 983 
making in cognitively symptomatic patients at both the MCI and dementia stages of impairment. 984 
Ultimately, the Workgroup was uncertain but endorsed the possibility that FTP tau PET may be 985 
appropriate in this scenario (rating = 6).  986 
 987 
Clinical Scenario 7  988 
“Patients presenting with mild cognitive impairment or dementia syndrome that could be 989 
consistent with AD pathology but has atypical features (e.g., non-amnestic clinical presentation, 990 
rapid or slow progression, etiologically mixed presentation).” 991 
 992 
Consensus ratings:  993 

Amyloid = 8 (Moderately confident that scenario is appropriate) 994 
Tau = 7 (Only somewhat confident that the scenario is appropriate)   995 

 996 
Amyloid 997 
Symptomatic cognitive impairment due to AD is clinically heterogenous. While memory loss is 998 
the most common presenting symptom, an estimated 20%-25% of patients present with non-999 
amnestic syndromes, including primary changes in language,162visuospatial/visuoperceptual 1000 
abilities,163 executive functioning,164 and (more rarely) changes in personality, behavior and 1001 
motor functioning.53,165,166 Autopsy studies suggest that AD is the most common underlying 1002 
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neuropathology in patients presenting with the logopenic-variant of primary progressive aphasia 1003 
(lvPPA)167,168, and posterior cortical atrophy (PCA) syndromes50. AD is also associated with a 1004 
primary dysexecutive syndrome164 and is the underlying neuropathology in ~25% of patients 1005 
presenting with corticobasal syndrome (CBS)169. AD pathology is a relatively rare cause of the 1006 
behavioral-variant of frontotemporal dementia170,171 and nonfluent/agrammatic or semantic 1007 
variants of PPA.167,168 Furthermore, while AD is typically associated with a slow and insidious 1008 
decline in cognition and function, some patients present with unusually rapid or slow 1009 
progression.54,172 Finally, mixed pathologies are increasingly common in older patients with MCI 1010 
and dementia,151,173 and these can manifest as clinically mixed presentations, with features of 1011 
both AD and other dementia syndromes. 1012 
 1013 
Patients presenting with atypical features often present a diagnostic challenge. Amyloid PET 1014 
can be very helpful in excluding AD neuropathology in these patients61,117,152. A negative 1015 
amyloid PET may increase clinical suspicion of a non-AD neurodegenerative process such as 1016 
frontotemporal lobar degeneration (FTLD), particularly in patients presenting with focal, non-1017 
amnestic syndromes.174 In patients with mild impairment and slow progression, negative 1018 
amyloid PET raises the possibility of a potentially treatable, non-degenerative cause of 1019 
impairment (e.g., primary medical, mood or sleep disorder).161 Conversely, in patients with rapid 1020 
progression, negative amyloid PET may suggest a non-AD neurodegenerative disease, prion 1021 
disease, or autoimmune encephalopathy. A positive amyloid PET scan increases the likelihood 1022 
that AD is the primary cause of impairment (particularly in lvPPA and PCA, in which the a priori 1023 
likelihood of AD is high), or a contributing pathology in patients with etiologically mixed 1024 
presentations. As always, the patient’s age should be considered in interpreting the clinical 1025 
meaningfulness of a positive amyloid PET result given the increasing prevalence of amyloid in 1026 
cognitively unimpaired individuals with increasing age.161 In the Imaging Dementia—Evidence 1027 
for Amyloid Scanning (IDEAS) study, amyloid PET was positive in 70.1% of patients with 1028 
atypical dementia, and lead to changes in management in 63.5% of these patients159. Overall, 1029 
the Workgroup concluded that amyloid PET was appropriate in this scenario (rating = 8). 1030 
 1031 
Tau 1032 
As with amyloid PET, an “AD-like” tau PET binding pattern can help establish AD as a primary 1033 
or contributing cause of impairment.36,155,156 Furthermore, the spatial pattern of tau PET often 1034 
matches brain regions that are clinically affected and show evidence of neurodegeneration on 1035 
FDG-PET or MRI (e.g., greater involvement of occipital visual processing regions in PCA; 1036 
greater left hemisphere involvement in lvPPA; greater binding in sensorimotor cortex in CBS 1037 
due to AD),175-178increasing confidence that the underlying syndrome is due to AD. Additionally, 1038 
high tau burden is associated with more rapid clinical progression, and low tau burden with 1039 
slower progression.171,179 Importantly, 18F-FTP shows absent-to-low binding to tau aggregates in 1040 
non-AD tauopathies (e.g., chronic traumatic encephalopathy or tau subtypes of FTLD),180,181 1041 
and tau PET should not be used clinically to “rule-in” these conditions. Overall, the Workgroup 1042 
concluded that tau PET was appropriate in this scenario (rating = 7). 1043 
 1044 
Clinical Scenario 8  1045 
 1046 
“To determine disease severity or track disease progression in patients with an established 1047 
biomarker-supported diagnosis of mild cognitive impairment or dementia due to AD pathology.” 1048 
 1049 
Consensus ratings:  1050 
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Amyloid = 1 (Highly confident that the clinical scenario is rarely appropriate) 1051 
Tau = 4 (Uncertain, but possibility that rarely appropriate) 1052 

 1053 
Amyloid 1054 
This scenario relates to patients with an existing diagnosis of MCI or dementia due to AD 1055 
pathology supported by biomarker evidence, e.g., a positive amyloid PET scan or CSF profile 1056 
consistent with AD. Cross-sectional and longitudinal studies do not support the use of a 1057 
subsequent amyloid PET to assess the degree of cognitive impairment or to monitor the rate of 1058 
progression of the underlying AD pathological process. Both autopsy and PET studies have 1059 
shown that Amyloid accumulation begins approximately two decades before onset of cognitive 1060 
decline,161 proceeds in a sigma-shaped fashion, is substantial at the MCI stage, and has 1061 
typically approached a plateau at the stage of mild AD dementia.130,182 There is little further 1062 
accumulation as clinical manifestations progress, so serial scans are not helpful to monitor 1063 
disease progression. Also, since there is little correlation between the level of brain amyloid and 1064 
cognitive function in MCI or AD,183 a repeat scan will not provide information on disease 1065 
severity. Disease severity and progression in patients in this scenario should be tracked by 1066 
clinical evaluation, including cognitive testing. 1067 
 1068 
Because a subsequent amyloid scan provides no actionable information about disease severity 1069 
or progression in patients with a biomarker-supported diagnosis of MCI or dementia due to AD 1070 
pathology, the Workgroup concluded that amyloid PET is rarely appropriate in this clinical 1071 
scenario (rating = 1). 1072 
 1073 
Tau 1074 
In contrast to amyloid PET, autopsy and PET studies have shown that the level of cortical tau 1075 
correlates with cognitive status and symptomatic disease stage46,184 However, there are limited 1076 
data on the clinical utility of serial tau scans. Therefore, the use of tau PET scans to track 1077 
disease progression is uncertain. Currently, such a scan would not change patient management 1078 
or add additional useful information beyond what is provided by serial clinical evaluations, e.g., 1079 
with cognitive testing. It is possible that changes in tau PET could inform prognosis or treatment 1080 
choices, but this remains to be demonstrated. The method of scan interpretation may play a role 1081 
in considering the potential utility of serial tau scans. Both quantitative approaches and visual 1082 
assessment of progression in the spatial pattern of tau could be useful. In addition, it should be 1083 
noted that serial tau scans can have great value as a clinical research tool or in anti-AD drug 1084 
development, as they can reflect disease progression or response to therapy. Overall, based on 1085 
currently available data, the Workgroup was uncertain but endorsed the possibility that tau PET 1086 
may be rarely appropriate in this scenario (rating = 4). 1087 
 1088 
Clinical Scenario 9  1089 
“Patients presenting with prodromal Lewy Body disease or dementia with Lewy Bodies” 1090 
 1091 
Consensus ratings:  1092 

Amyloid = 2 (Moderately confident that scenario is rarely appropriate) 1093 
Tau = 4 (Uncertain, but possibility that rarely appropriate) 1094 

 1095 
Amyloid 1096 
Dementia with Lewy Bodies (DLB) is characterized by predominant deficits in executive and 1097 
visuospatial functions, accompanied by additional core clinical features, including one or more 1098 
spontaneous features of parkinsonism, fluctuating cognition, visual hallucinations, and rapid eye 1099 
movement (REM) sleep behavior disorder.185 Biomarkers contributing to the diagnosis are (1) 1100 
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reduced binding of dopamine transporter radioligands in basal ganglia on single photon 1101 
emission computed tomography (SPECT) or PET imaging; (2) low uptake of Iodine-131 meta-1102 
iodobenzylguanidine (123I-MIBG) on myocardial scintigraphy; and (3) polysomnographic 1103 
confirmation of REM sleep without atonia. Novel CSF seed amplification assays may provide 1104 
direct evidence for aggregation of α-synuclein, the protein deposited in Lewy bodies and Lewy 1105 
neurites186. The diagnosis of DLB is appropriate when dementia precedes or occurs 1106 
concurrently with parkinsonism, whereas a diagnosis of Parkinson’s disease with dementia 1107 
(PDD) is more appropriate when dementia occurs in the setting of established Parkinson’s 1108 
disease (typically at least 1 year prior to dementia). Proposed criteria for prodromal MCI with LB 1109 
(MCI-LB) include MCI (particularly involving executive or visuospatial domains with relative 1110 
sparing of episodic memory) occurring in combination with core DLB clinical and biomarker 1111 
features. Less well-characterized prodromal DLB presentations are delirium or marked 1112 
fluctuations in consciousness, and late onset psychiatric presentations, including major 1113 
depression or psychosis.187 The defining neuropathology of DLB is widespread limbic and 1114 
neocortical α-synuclein-containing Lewy bodies and Lewy neurites. Approximately 50% of 1115 
patients with DLB are found to have core features of AD neuropathology, including diffuse and 1116 
neuritic amyloid plaques and tau neurofibrillary tangles. Given the high prevalence of co-1117 
pathology, AD-specific biomarkers such as amyloid and tau PET are in general not useful in the 1118 
diagnostic evaluation of DLB.  1119 
 1120 
Amyloid PET is positive in over 50% of patients with DLB,117 corresponding with the high 1121 
prevalence of Amyloid plaques (diffuse more than neuritic plaques) at autopsy. Previous studies 1122 
reported rates of 35%-40% amyloid PET positivity in patients with MCI-LB.159,188 As in other 1123 
disorders, amyloid positivity is more common with increased age and the presence of the APOE 1124 
ε4 genotype. The pattern of amyloid tracer uptake is similar to AD, while binding intensity is on 1125 
average intermediate between controls and dementia due to AD189. Overall, a positive amyloid 1126 
PET does not help distinguish AD from DLB, although a negative scan can help exclude an AD 1127 
diagnosis. Amyloid PET is more frequently positive in DLB than in PDD, and scan positivity is 1128 
associated with lower cognitive performance and more rapid cognitive decline in PD, while 1129 
results in DLB are mixed.189 Amyloid PET results may not influence drug treatment, since 1130 
acetylcholinesterase inhibitors are indicated in both DLB and AD, and anti-Amyloid antibody 1131 
treatment would not be currently indicated in patients with clinical features of DLB. Overall, the 1132 
Workgroup concluded that amyloid PET is rarely appropriate in the evaluation of suspected DLB 1133 
in its fully established or prodromal stages (rating = 2). 1134 
 1135 
Tau 1136 
Tau neurofibrillary tangle co-pathology is also often identified at autopsy in patients with PDD 1137 
and DLB and contributes to cognitive impairment.190,191 The tau PET signal in DLB is on 1138 
average intermediate between AD dementia and controls, and higher than in PDD.192-194Tracer 1139 
uptake is typically seen in temporoparietal and occipital cortex, with relative sparing of the 1140 
medial temporal lobes. tau PET positivity is associated with amyloid PET positivity (although is 1141 
also seen in some amyloid-negative patients) and correlates with lower cognitive 1142 
performance.195-198A single small study of tau PET in prodromal DLB did not find elevated 1143 
binding compared to controls.199Overall, tau PET is unlikely to differentiate between DLB, PDD 1144 
and AD, though a positive scan increases the likelihood that AD pathology is contributing to 1145 
cognitive impairment. As with amyloid PET, results of tau PET are unlikely to impact drug 1146 
treatment. Overall, based on a relatively small number of available studies, the Workgroup was 1147 
uncertain whether tau PET was appropriate in DLB, but felt it was possible that the indication 1148 
was rarely appropriate (rating = 4). 1149 
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 1150 
Clinical Scenario 10  1151 
 1152 
“Patients with MCI or dementia with recent CSF biomarker results that are conclusive (whether 1153 
consistent or not consistent with underlying AD pathology).”  1154 
Consensus ratings:  1155 

Amyloid = 3 (Only somewhat confident that the scenario is rarely appropriate) 1156 
Tau = 6 (Uncertain, but possibility that the scenario is appropriate) 1157 

 1158 
Amyloid 1159 
When determining abnormal levels of brain amyloid, the CSF A42/A40 and P-tau181/ A42 1160 
ratios are highly congruent with the results obtained using amyloid PET imaging200. 1161 
Consequently, there is generally no need to perform an amyloid PET scan in patients with 1162 
clearly abnormal or normal CSF biomarker ratios. However, amyloid PET does offer additional 1163 
information beyond CSF biomarker ratios. Whereas CSF assays measure concentrations of 1164 
soluble Amyloid and P-tau monomers, amyloid PET characterizes the magnitude and spatial 1165 
distribution of fibrillar Amyloid plaque deposition. CSF may also detect Amyloid-related changes 1166 
prior to amyloid PET scan positivity. However, this additional information obtained from PET 1167 
was felt to rarely lead to changes in diagnosis or management. Overall, the Workgroup 1168 
concluded that amyloid PET in this scenario is rarely appropriate (rating = 3). While the group 1169 
did not specifically discuss the utility of amyloid PET in patients with conclusive plasma AD 1170 
biomarkers, similar principles would apply. 1171 
 1172 
Tau 1173 
Few studies to date have evaluated the additional value of tau PET in patients with MCI and 1174 
dementia with known CSF biomarker results. Even though CSF p-tau217 and p-tau181 1175 
concentrations correlate with the tau PET signal, the magnitude of correlation is modest; similar 1176 
CSF concentrations can associate with highly variable degrees of tau PET uptake and spatial 1177 
spread80,81. In cognitively impaired patients, tau PET is more strongly associated with cognitive 1178 
function than CSF p-Tau concentration75. Accumulating evidence indicates that CSF levels of p-1179 
tau change earlier than the tau PET signal in preclinical AD89,108, reaching a relative plateau 1180 
during the symptomatic stage of the disease201,202, while the tau PET signal continues to 1181 
increase in patients with AD dementia123,203. Further, the fluid measures do not provide any 1182 
regional information on tau pathology. Consequently, it is plausible that tau PET might add 1183 
important information beyond CSF biomarkers, e.g., when it comes to defining AD subtypes204 1184 
and prediction of subsequent cognitive decline171, but additional studies are needed and the 1185 
implications for patient care remain unclear.  Overall, the Workgroup was uncertain but 1186 
endorsed the possibility that tau PET may be appropriate in this scenario (rating = 6). While the 1187 
group did not specifically discuss the utility of tau PET in patients with conclusive plasma AD 1188 
biomarkers, similar principles would apply. 1189 
 1190 
Clinical Scenario 11  1191 
 1192 
“Patients with MCI or dementia with equivocal or inconclusive results on recent CSF 1193 
biomarkers.” 1194 
 1195 
Consensus ratings:  1196 

Amyloid = 8 (Moderately confident that the scenario is appropriate) 1197 
Tau = 6 (Uncertain, but possibility that the scenario is appropriate) 1198 
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 1199 
Amyloid 1200 
Considering the bimodal distribution of the A42/A40 and P-tau/A42 biomarker ratios, 1201 
relatively few patients are close to the cut offs used to define abnormality77,78. However, in those 1202 
patients with ratios very close to the established cut offs, an amyloid PET scan could be 1203 
considered to determine the A status more confidently. The two ratios mentioned above are 1204 
more accurate than single CSF biomarkers for determining brain amyloid status. For example, 1205 
increased CSF P-tau levels in patients with clearly normal CSF A42/A40 and P-tau/A42 1206 
ratios do not normally warrant an amyloid PET scan. Overall, the Workgroup concluded that 1207 
amyloid PET is appropriate in this scenario (rating = 8). While the Workgroup did not discuss 1208 
the utility of amyloid PET in patients with equivocal or inconclusive plasma AD biomarkers, 1209 
similar principles would apply. 1210 
 1211 
Tau 1212 
In scenario 10 above, it was concluded that tau PET might have additional value independent of 1213 
the outcome of already obtained CSF biomarker results. The Workgroup reached a similar 1214 
conclusion for this scenario, expressing uncertainty but endorsing the possibility that tau PET 1215 
may be appropriate in this scenario (rating = 6). While the Workgroup did not discuss the utility 1216 
of tau PET in patients with equivocal or inconclusive plasma AD biomarkers, similar principles 1217 
would apply. 1218 
 1219 
 1220 
Clinical Scenario 12  1221 
 1222 
“To inform the prognosis of patients presenting with mild cognitive impairment due to clinically 1223 
suspected AD pathology.” 1224 
 1225 
Consensus ratings:  1226 

Amyloid = 8 (Moderately confident that scenario is appropriate) 1227 
Tau = 7 (Only somewhat confident that the scenario is appropriate)   1228 

 1229 
Amyloid 1230 
There is robust evidence of the prognostic value of amyloid PET for predicting future outcomes 1231 
in patients with MCI whose clinical presentation is amnestic or otherwise consistent with AD. 1232 
Although definitions of MCI subtypes are variable across studies, numerous reports have found 1233 
that, allowing adequate follow-up duration, a majority of MCI patients with a positive amyloid 1234 
PET scan will progress to AD dementia, while the risk of progression to AD dementia is 1235 
significantly lower in those who are amyloid negative.205-211Overall, positive amyloid PET at 1236 
baseline is associated with an average hazard ratio of ~3-4 (range: 2,1-11.4) for conversion to 1237 
dementia in studies with 1-4.5 years of follow-up, after adjusting for confounding variables. The 1238 
value of amyloid PET for informing prognosis in MCI is further supported by studies 1239 
documenting the marked uncertainty and, in some cases, emotional turmoil that persons with 1240 
MCI and their family care partners live with on a daily basis.212 Learning whether or not AD 1241 
pathology is present may lessen such uncertainty and enable clinicians and family care partners 1242 
to guide patients with amyloid positivity to available resources for future planning. However, 1243 
evidence is limited, and one study found that disclosure of amyloid PET results did not alter 1244 
perceptions of ambiguity among patients and families impacted by MCI.213 The Workgroup 1245 
acknowledged that the “value of knowing” one’s brain amyloid status in the context of MCI is a 1246 
theoretical construct about which high level empirical evidence is lacking.  Furthermore, 1247 
individual rates of clinical progression in patients with amyloid-positive MCI are highly 1248 
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variable214, and the prognostic value of amyloid PET may be improved if combined with MRI or 1249 
18F-FDG-PET as imaging markers of neurodegeneration.61,189 While positive amyloid PET is 1250 
useful in predicting whether individuals are likely to progress to dementia, it is not as useful at 1251 
predicting time to conversion, and individuals with negative amyloid PET may still develop a 1252 
non-AD dementia. Despite these caveats, the Workgroup concluded that amyloid PET is 1253 
appropriate in this scenario (rating = 8). 1254 
 1255 
Tau 1256 
Cohort studies have consistently found a positive tau PET scan to be associated with an 1257 
increased likelihood of cognitive and functional decline in persons with MCI, suggesting the 1258 
potential for such testing to inform prognosis in this clinical scenario. In a recent large, multi-site 1259 
study, tau PET was a stronger predictor of longitudinal cognitive decline than amyloid PET or 1260 
MRI cortical thickness in individuals with amyloid-positive MCI.171 However, the use of tau PET 1261 
in this scenario is currently being prospectively validated, and additional longitudinal studies are 1262 
needed to further elucidate the prognostic value of tau PET in MCI. Overall, the Workgroup was 1263 
somewhat confident that tau PET is appropriate in this scenario (rating = 7). 1264 
 1265 
Clinical Scenario 13  1266 
 1267 
“To inform the prognosis of patients presenting with dementia due to clinically suspected AD 1268 
pathology.” 1269 
 1270 
Consensus ratings:  1271 

Amyloid = 4 (Uncertain, but possibility that the scenario is rarely appropriate) 1272 
Tau = 7 (Only somewhat confident that the scenario is appropriate)   1273 

 1274 
Amyloid 1275 
The value of amyloid PET lies predominantly in confirming the presence of AD pathology as 1276 
opposed to providing prognostic value. As a group, persons who meet clinical criteria for 1277 
dementia due to AD and have a positive amyloid PET decline more rapidly than those who meet 1278 
clinical criteria but have a negative amyloid PET.165 This likely represents the fact that non-AD 1279 
neuropathologies that mimic AD clinically (e.g., Limbic-predominant age-related TDP-43 1280 
encephalopathy [LATE]) are associated with less rapid decline. However, in amyloid-positive 1281 
individuals with dementia, amyloid deposition has often plateaued and the burden or distribution 1282 
of amyloid correlates poorly with baseline level of impairment or subsequent longitudinal 1283 
decline.215 Overall, the Workgroup was uncertain but endorsed the possibility that amyloid PET 1284 
may rarely be appropriate in this scenario (rating = 4). 1285 
 1286 
Tau 1287 
Neurofibrillary tangle burden associated with tau protein deposition correlates more closely with 1288 
the severity of dementia than amyloid burden. In a recent large, multi-site study, tau PET 1289 
correlated more strongly with longitudinal decline in the mini-mental state exam (MMSE) than 1290 
amyloid PET (although less strongly than MRI cortical thickness) in individuals with amyloid-1291 
positive AD dementia.171 Overall, acknowledging the limited available data, the Workgroup was 1292 
somewhat confident that tau PET was appropriate in this scenario (rating = 7).  1293 
 1294 
Clinical Scenario 14  1295 
 1296 
“To determine eligibility for treatment with an approved amyloid targeting therapy.” 1297 
 1298 
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Consensus ratings: 1299 
Amyloid = 9 (Highly confident that scenario is appropriate) 1300 
Tau = 8 (Moderately confident that scenario is appropriate) 1301 

 1302 
Amyloid 1303 
Amyloid PET is often used to determine eligibility for enrollment in clinical trials testing anti-1304 
amyloid treatment for early AD216-218, including the pivotal studies leading to FDA’s accelerated 1305 
approval of the anti-Amyloid monoclonal antibody aducanumab (EMERGE/ENGAGE trials) and 1306 
full approval of the anti-Amyloid monoclonal antibody lecanemab (CLARITY-AD trial) for the 1307 
treatment of MCI and mild dementia due to AD219. A third antibody, donanemab, recently 1308 
reported positive phase 3 results (TRAILBLAZER-ALZ2 trial)39. In EMERGE, CLARITY-AD and 1309 
TRAILBLAZER-ALZ2, treatment with an Amyloid-targeting monoclonal antibody was associated 1310 
with slower cognitive and functional decline compared to placebo on primary and secondary 1311 
clinical endpoints220. The FDA prescribing information for aducanumab and lecanemab require 1312 
biomarker evidence of amyloid pathology (established via PET or CSF) prior to initiating 1313 
therapy(lecanemab, aducanumab). Apart from its high diagnostic accuracy, amyloid PET 1314 
exhibits some additional advantages over other amyloid biomarkers, such as low variability of 1315 
the measure across centers and methods,221 low individual variability in healthy subjects, and 1316 
provision of information on extent and location of amyloid-pathology48 which may be relevant for 1317 
selecting candidates for amyloid-targeting therapies. Consequently, the Workgroup concluded 1318 
that amyloid PET is appropriate in patients being evaluated for treatment with approved anti-1319 
Amyloid therapies (rating = 9). The final rating reflects an increase compared to the original 1320 
rating in August 2021, which was still in the “Appropriate” range (original rating = 8). 1321 
 1322 
Tau 1323 
The use of tau PET in anti-amyloid clinical trials is relatively limited to date. Elevated tau PET 1324 
was required as an inclusion criterion in the TRAILBLAZER-ALZ2 trial of donanemab39, while 1325 
tau PET scans were acquired in a nonrandomized subset of participants in EMERGE/ENGAGE 1326 
and CLARITY-AD.  1327 
 1328 
The data available to date suggest that baseline tau PET may predict the magnitude of clinical 1329 
benefit associated with amyloid removal by monoclonal antibodies. In TRAILBLAZER-ALZ2, 1330 
clinical outcomes were evaluated separately in a baseline “low-medium” tau PET group and in 1331 
the “combined population,” the latter also including participants with baseline high tau PET. 1332 
Overall, slowing of clinical decline was greater in the “low-medium” tau group than in the “whole 1333 
population.” A post-hoc analysis suggested limited clinical benefit compared to placebo in 1334 
patients with “high” tau PET at baseline. An analysis of the tau PET sub-study from CLARITY-1335 
AD similarly showed that patients with the lowest baseline tau PET derived the greatest clinical 1336 
benefit from treatment.222 Collectively, the data suggest that amyloid removal may be most 1337 
clinically beneficial in impaired individuals who are at earlier stages of tau spread as staged by 1338 
PET. Based on these data, the Workgroup concluded that tau PET is appropriate in patients 1339 
being evaluated for treatment with approved anti-Amyloid therapies (rating = 8). This final rating 1340 
represents an increase from the initial rating in August 2021, which was in the “Uncertain” range 1341 
(original rating = 5). 1342 
 1343 
Clinical Scenario 15:  1344 
 1345 
“To monitor response among patients that have received an approved amyloid targeting 1346 
therapy.” 1347 
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 1348 
Consensus ratings: 1349 

Amyloid = 8 (Moderately confident that scenario is appropriate) 1350 
Tau = 5 (Uncertain, evidence is inconclusive or lacking)  1351 

 1352 
Amyloid 1353 
Serial amyloid PET scans can be used to measure amyloid plaque removal and thus confirm 1354 
target engagement in clinical trials of amyloid lowering therapies targeting fibrillar forms of 1355 
Amyloid39,216,218,219,223-225. Conversely, drugs that target soluble forms of Amyloid may show 1356 
slowed accumulation (rather than reductions) of amyloid plaques226. The FDA determined that 1357 
lowering of amyloid PET signal was a suitable surrogate biomarker “reasonably likely to predict 1358 
a clinical benefit” as a basis for accelerated approval of aducanumab and lecanemab (prior to 1359 
full approval of the latter based on demonstration of clinical efficacy in a phase 3 trial)113,227. 1360 
Further work has suggested that, in the early symptomatic stage of AD, clinical response to 1361 
amyloid-targeting monoclonal antibodies may be related to the magnitude of plaque reduction, 1362 
the rapidity of plaque removal, or the ability to suppress amyloid levels below a threshold. All 1363 
these outcomes are measured by amyloid PET changes in response to therapy12,228-230.  1364 
 1365 
While in EMERGE/ENGAGE and CLARITY-AD, active antibody treatment was maintained 1366 
throughout the trials, in TRAILBLAZER-ALZ2 (and its phase 2 predecessor TRAILBLAZER-1367 
ALZ), the duration of antibody treatment was titrated to amyloid PET response, with patients 1368 
switched from active treatment to placebo once their amyloid PET scans were in the negative 1369 
range39,218. In both these phase 2 and 3 trials of donanemab, this approach to restricting 1370 
treatment duration was sufficient to achieve a clinical benefit. Based on these emerging data, 1371 
the Workgroup felt that measurement of amyloid reduction may be important in guiding 1372 
management, and thus concluded that amyloid PET is appropriate for monitoring response in 1373 
patients receiving approved amyloid targeting therapy (rating = 8). This represents an increase 1374 
from the initial rating in August 2021, which was in the “Uncertain” range (initial rating = 6). 1375 
 1376 
Tau 1377 
Consistently across trials, amyloid removal by amyloid-targeting monoclonal antibodies led to 1378 
reductions in fluid (CSF and plasma) measure of phosphorylated tau. Data regarding the effects 1379 
of amyloid removal on tau PET data are more limited and less consistent. In relatively small and 1380 
nonrandomized subsets of patients enrolled in EMERGE/ENGAGE and CLARITY-AD, amyloid 1381 
lowering treatment was associated with reductions or slowed progression of regional tau PET 1382 
signal113. In the phase 2 TRAILBLAZER study, amyloid lowering slowed increases in regional 1383 
(but not global cortical) tau PET, but these results were not replicated in the phase 3 1384 
TRAILBLAZER-ALZ2 trial.  1385 
 1386 
Given that tau PET changes are thought to occur downstream of amyloid and have more 1387 
established correlations with clinical outcomes, tau imaging has a great potential for gauging 1388 
disease modification in patients treated with anti-amyloid therapies. However, based on very 1389 
limited empiric evidence, the Workgroup was uncertain about the appropriateness of tau PET in 1390 
this scenario (rating = 5). This rating reflects the initial rating in August 2021. Given limited 1391 
additional data, the Workgroup elected not to vote again on this scenario in August 2023. 1392 
 1393 
Clinical Scenario 16:  1394 
“Non-medical usage (e.g., legal, insurance coverage, or employment screening).” 1395 
 1396 
Consensus ratings:  1397 
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Amyloid = 1 (highly confident that the clinical scenario is rarely appropriate) 1398 
Tau = 1 (highly confident that the clinical scenario is rarely appropriate) 1399 

 1400 
Amyloid and Tau 1401 
There is no evidence to suggest that amyloid or tau imaging is more informative than traditional 1402 
neuropsychological or performance-based assessments to establish the presence, or evaluate 1403 
the extent, of cognitive or functional impairment. Examples of non-medical usage include 1404 
assessments of legal competency, employability, insurability and fitness to perform activities 1405 
such as driving, piloting an aircraft, governing, or making financial decisions. The high 1406 
prevalence of AD pathology in cognitively unimpaired older adults further underscores the 1407 
inappropriateness of amyloid and tau PET for non-medical purposes. The committee therefore 1408 
ranked both amyloid and tau PET as “rarely appropriate” in this scenario (rating = 1 for both). 1409 
 1410 
Clinical Scenario 17: 1411 
 1412 
“In lieu of genotyping for suspected autosomal dominant mutation carriers.” 1413 
 1414 
Consensus ratings:  1415 

Amyloid = 1 (highly confident that the clinical scenario is rarely appropriate) 1416 
Tau = 1 (highly confident that the clinical scenario is rarely appropriate) 1417 

 1418 
  1419 
Amyloid and Tau 1420 
Dominantly inherited AD (DIAD) is caused by autosomal dominant mutations in the amyloid 1421 
precursor protein (APP), presenilin-1 (PSEN1) or presenilin-2 (PSEN2) genes. Pedigrees are 1422 
typically characterized by early-onset of symptoms across multiple generations. The standard of 1423 
care for evaluating potential mutation carriers includes a detailed clinical evaluation, including a 1424 
family history, and referral to a genetic counselor for discussion of diagnostic or predictive 1425 
genotyping. Amyloid PET in DIAD becomes positive approximately two decades prior to 1426 
estimated year of symptom onset,231-233 with cortical binding accompanied in some mutations by 1427 
early and high binding in the striatum. Rarely, mutations lead to atypical conformations of 1428 
amyloid (e.g., cotton wool plaques) that do not bind amyloid PET ligands. In contrast, tau PET in 1429 
DIAD turns positive around the same time that cognitive changes are first detected.  1430 
 1431 
In the future, amyloid and tau PET may be used to evaluate disease stage (i.e., onset and 1432 
degree of amyloidosis and tau deposition) and potentially impact decisions about initiating 1433 
specific therapies. Notably, amyloid targeting therapies have thus far not been shown to slow 1434 
cognitive decline in DIAD217. Moreover, amyloid and tau PET should not be considered 1435 
alternatives to genotyping, since absence of PET signal does not exclude a mutation, and 1436 
conversely positive PET cannot confirm the presence of DIAD. The Workgroup therefore 1437 
concluded that amyloid and tau PET are rarely appropriate in this scenario (rating=1 for both). 1438 
 1439 

9.  Value of Tau PET Imaging in Combination with Amyloid 1440 

PET Imaging 1441 

 1442 
The current AUC evaluated clinical scenarios for amyloid and tau PET separately for conceptual 1443 
reasons, clarity, and because there was often insufficient evidence to evaluate the combined 1444 
use of the two PET modalities. While this AUC will make no recommendations about the joint 1445 
use of the two PET modalities, considerations of how the two complement each other will be 1446 
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discussed here.  We expect that future investigations will provide an empiric basis for optimizing 1447 
their joint use. 1448 

The markedly different temporal and spatial profiles of amyloid and tau accumulation translates 1449 
into different relationships between abnormal amyloid and tau PET images for the diagnosis of 1450 
AD. The specific circumstances will determine which of the two PET tracers would be most 1451 
helpful. Amyloid PET is a more sensitive biomarker for identifying persons who are early in the 1452 
Alzheimer pathway. Amyloid PET has greater sensitivity in patients with MCI or earlier stages of 1453 
impairment because tau PET abnormalities in CU, SCD or MCI persons are typically absent or 1454 
very modest. In symptomatic persons, abnormal amyloid PET will not necessarily prove that AD 1455 
is a relevant etiology if tau PET abnormalities are absent. As the topography of tau PET signal 1456 
is closely correlated with spatial patterns of AD-related neurodegeneration and domain-specific 1457 
cognitive performance, a topographically extensive tau PET pattern in a symptomatic person is 1458 
highly likely to indicate that AD is a relevant etiology. If tau PET abnormalities were absent or 1459 
spatially limited, the clinician could conclude that other etiologies are likely to be more relevant, 1460 
even if elevated amyloid by PET was present.  1461 

There may be scenarios in which both tracers are required for decision-making. In a head-to-1462 
head study comparing the clinical utility of amyloid and tau PET, patients were randomized to 1463 
receive amyloid or tau PET first (and the other modality second) as part of a diagnostic work-1464 
up234. Regardless of modality, the first PET scan led to a change in diagnosis in 28% of patients 1465 
and the second scan changed diagnosis further in 18%-19%. The only modality-specific 1466 
difference found was that a negative amyloid PET had a larger impact on diagnosis than a 1467 
negative tau PET. In another recent study, the addition of tau PET led to a change in diagnosis 1468 
in 7.5% of memory clinic patients with known amyloid status based on CSF235. In cognitively 1469 
unimpaired individuals, the combination of positive amyloid and tau PET is associated with a 1470 
greatly increased likelihood of conversion to MCI or dementia compared to individuals who are 1471 
negative on both modalities, or positive just on one99,126. As discussed earlier, in the setting of 1472 
therapeutic interventions targeted at reducing amyloid, it might be necessary to judge the 1473 
burden of both amyloid and tau initially, and also to follow both for safety and efficacy reasons 1474 
over the course of treatment.  1475 

10.  Limitations of Evidence Review   1476 

The outside systematic review of the literature undertaken for this paper was presented more 1477 
than 2 years prior to publication of these Appropriate Use Criteria. Since that time several 1478 
additional papers evaluating the accuracy and clinical importance of amyloid and tau PET were 1479 
published. The authors of these AUC have included these new papers in the bibliography when 1480 
they were cited in the text; however, these papers were not subject to the same review process 1481 
and grading as papers included in the initial systematic literature review.  1482 

As noted earlier, there are very limited data regarding the clinical utility of tau PET in 1483 
comparison to amyloid PET, particularly pertaining to the impact of each modality on clinical 1484 
decision making. This led to generally higher confidence in the utility of amyloid PET versus tau 1485 
PET in most clinical scenarios. 1486 

Cognitive health disparities, defined here as preventable differences in the prevalence and risk 1487 
of dementia due to AD and related disorders (AD/ADRD), are increasingly recognized to 1488 
disproportionately negatively impact individuals from historically underrepresented racial and 1489 
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ethnic groups. These groups have been markedly underrepresented in AD-related research, 1490 
including in neuroimaging studies. Limited studies have generally found lower rates of amyloid 1491 
PET positivity in African-Americans/Blacks, Hispanics/Latinx and Asian-American Pacific 1492 
Islanders compared to non-Hispanic Whites, ranging from cognitively unimpaired research 1493 

volunteers to patients with MCI and dementia236-238, though the mechanisms that drive these 1494 

observed differences are not well understood. Further studies of amyloid and tau PET in 1495 
underrepresented populations are underway, as are efforts to enhance diversity across 1496 

longitudinal AD/ADRD research cohorts239. 1497 

Many of the studies comparing amyloid and tau PET to a neuropathological standard-of-truth 1498 
were conducted in end-of-life patients. Studies validating PET-to-autopsy correlations in more 1499 
clinically relevant memory clinic populations (i.e., the generally younger and less impaired 1500 
individuals in which imaging would be considered) are needed. There is also increasing 1501 
recognition that cognitive impairment in older individuals is very often related to multiple 1502 
neuropathologies beyond Amyloid and tau (e.g., vascular contributions, Lewy bodies, LATE). 1503 
More studies are needed to evaluate how copathologies impact the clinical interpretation of 1504 
amyloid and tau PET results.  1505 

Finally, published evidence is often based on investigational studies conducted in research 1506 
settings. When applying such research findings to general clinical patient populations, careful 1507 
considerations need to be taken, given different pre-test probabilities of diseases in various 1508 
clinical settings and possible inconsistencies in imaging quality, image interpretation accuracy, 1509 
and other technical factors. It is important to reserve clinical judgments for individual patient 1510 
considerations and specific clinical settings. 1511 
 1512 

11. Further research questions  1513 

While much progress has been made in the clinical implementation of amyloid and tau PET, 1514 
there are still many knowledge gaps that should serve as groundwork for future work. With the 1515 
recent accelerated approval of Amyloid-targeting monoclonal antibodies, the field has entered a 1516 
new era of molecular-specific therapies, and amyloid and tau PET are likely to play an 1517 
increasingly important role in individuals being evaluated for these novel treatments. Beyond 1518 
their diagnostic value, future work will undoubtedly focus on whether amyloid and tau PET can 1519 
identify optimal responders to various treatments, and whether the duration of treatment can be 1520 
calibrated based on longitudinal changes in PET. Especially in the context of longitudinal 1521 
imaging, it will be important to determine whether quantitative approaches to image 1522 
interpretation may enhance the current approach of visual reads. Some data do suggest a 1523 
combination of visual and quantitative interpretation can improve the accuracy of reads, 1524 
especially for less experienced nuclear medicine physicians and radiologists 32.PET 1525 
quantification will likely be essential for gauging response to amyloid lowering therapies (and 1526 
possibly in future tau lowering therapies40,240 ), in clinical practice, and for gauging disease 1527 
progression. 1528 

To date, only one tau PET tracer (18F-FTP) has been approved by the FDA for clinical use, 1529 
based on a visual read method that highlights neocortical uptake and is insensitive to early-1530 
stage (but potentially clinically meaningful) tau pathology36. PET-to-autopsy studies are currently 1531 
being conducted with additional tau PET tracers (e.g., 18F-MK6240 and 18F-PI2620), and 1532 
employing alternative visual interpretation methods, including methods that identify binding that 1533 
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is restricted to the medial temporal lobe241-243. These studies will determine whether alternative 1534 
tau tracers or visual interpretation approaches are more sensitive to Braak Stages III/IV, which 1535 
would impact future clinical recommendations. As noted earlier, augmenting visual reads with 1536 
semi-quantification of PET signal in clinical practice could also broaden the utility of both 1537 
amyloid and tau PET in guiding clinical care. 1538 

 1539 

Few studies have evaluated the clinical impact of tau PET on patient diagnosis and 1540 
management, as a single modality or in combination with amyloid PET234,235. Future clinical 1541 
practice guidelines will determine the specific role of PET within the larger landscape of CSF 1542 
and emerging plasma Amyloid and tau biomarkers. While much of the initial work on clinical 1543 
utility has focused on diagnosis and patient management, data are beginning to emerge 1544 
regarding the impact of amyloid PET on longer-term health outcomes, including inpatient and 1545 
outpatient resource utilization, institutionalization and even mortality244,245. Finally, 1546 
acknowledging the transformative impact of amyloid and tau PET on AD research and drug 1547 
development, there remains a huge unmet need to develop molecular imaging markers for other 1548 
protein aggregates, such as non-AD tauopathies, α-synuclein and TDP-43, to truly capture the 1549 
complexity of brain pathologies that contribute to neurodegeneration and dementia. 1550 
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Appendix B: PICOTS Framework and Key Questions for Systematic Evidence 1580 
Review  1581 
 1582 
Population: 1583 

KQ 1: Persons who are cognitively unimpaired 1584 

KQ 2: Persons with subjective cognitive decline 1585 

KQ 3: Persons with mild cognitive impairment  1586 

KQ 4: Persons with atypical dementia presentation 1587 

KQ 5: Persons with AD dementia (mild, moderate, severe) 1588 

KQ 6: Persons with related dementia (i.e., caused by another neurodegenerative condition) 1589 

KQ 7: Persons with nondefinitive results on prior testing/imaging 1590 

KQ 8: Person with AD phenotype 1591 

Interventions: 1592 

All KQ: beta amyloid PET with florbetapir, florbetaben, flutemetamol 1593 

All KQ: tau PET with flortaucipir, soon-to-be approved agents (e.g., aducanumab) 1594 

Comparisons: 1595 

All KQ: Reference standard for Alzheimer’s (e.g., pathological verification or clinical criteria) 1596 

All KQ: No amyloid PET 1597 

All KQ: No tau PET 1598 

Outcomes: 1599 

KQ 1,3: Diagnostic accuracy (sensitivity, specificity, and related measures); discrimination 1600 

(AUROC) 1601 

KQ 2,4: Change in diagnosis, change in clinical management 1602 

KQ 5: Diagnostic accuracy, discrimination, risk estimates (e.g., odds ratio, relative risk, hazards 1603 

ratio) 1604 

Study Considerations: 1605 

Excluded non-English studies 1606 

Excluded studies only published as abstracts 1607 

 1608 
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Table 5: Key Research Questions 1609 

   Key Questions 
Clinical Considerations and Sub-

questions 

99Question 1: 1. What is the accuracy 

of amyloid PET for detecting the 
presence of pathological changes that 
contribute to identifying persons with 
Alzheimer’s disease? 

 

a. What is the accuracy of amyloid PET in 

patients with Down syndrome or a 

relevant clinical syndrome (amnestic 

cognitive impairment, primary 

progressive aphasia, posterior cortical 

atrophy, dysexecutive cognitive 

impairment, or corticobasal syndrome)? 

Question 2: What are the effects of 
amyloid PET versus no PET on clinical 
decision making? 

 

Question 3: What is the diagnostic 
accuracy* of tau PET for detecting the 
presence of pathological changes that 
contribute to identifying persons with 
Alzheimer’s disease? 

a. What is the accuracy of tau PET in 

patients with Down syndrome or a 

relevant clinical syndrome (amnestic 

cognitive impairment, primary 

progressive aphasia, posterior cortical 

atrophy, dysexecutive cognitive 

impairment, or corticobasal syndrome)? 

Question 4: What are the effects of tau 
PET versus no PET on clinical decision 
making? 

 

Question 5: What is the prognostic 
value of amyloid/tau PET? 

 

 1610 
  1611 

Appendix C: Quality Rating Criteria Used for Systematic Review  1612 
 1613 
Diagnostic Accuracy Studies Criteria 1614 

Patient selection: Was a consecutive or random sample of patients enrolled? 1615 

 1616 

Index test(s): Were thresholds pre-specified? 1617 

 1618 
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Reference standard: Were the reference standard results interpreted without knowledge of the 1619 

results of the index text? 1620 

 1621 

Flow and timing 1622 

● Were all patients included in the analysis? 1623 

● Were any data discrepancies present? 1624 

 1625 

Response options for all questions: Yes, no, unclear, or not applicable 1626 

 1627 

Definitions of ratings based on above criteria: 1628 

1. High = Further research is very unlikely to change our confidence in the estimate of effect. 1629 

2. Moderate = Further research is likely to have an important impact on our confidence in the 1630 

estimate of effect and may change the estimate. 1631 

3. Low = Further research is very likely to have an important impact on our confidence in the 1632 

estimate of effect and is likely to change the estimate. 1633 

4. Very low = Any estimate of effect is very uncertain 1634 

 1635 

Non-Diagnostic Accuracy Studies Criteria 1636 

 1637 

Initial assembly of comparable groups 1638 

● Did the study attempt to enroll a random sample or consecutive patients meeting inclusion 1639 

criteria (inception cohort)? 1640 

● Did the study use accurate methods for ascertaining exposures, potential confounders, and 1641 

outcomes?  1642 

 1643 

Maintenance of comparable groups 1644 

● Did the article report attrition? 1645 

● Is there important differential loss to follow-up or overall high loss to follow-up? 1646 

 1647 

Measurements: equal, reliable, and valid 1648 

● Were outcomes pre-specified and defined, and ascertained using accurate methods? 1649 

● Were outcome assessors and/or data analysts blinded to treatment? 1650 

 1651 

Definitions of ratings based on above criteria: 1652 
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1. High = Further research is very unlikely to change our confidence in the estimate of effect. 1653 

2. Moderate = Further research is likely to have an important impact on our confidence in the estimate of effect and may change the 1654 

estimate. 1655 

3. Low = Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to 1656 

change the estimate. 1657 

4. Very low = Any estimate of effect is very uncertain 1658 

 1659 

Appendix D: Additional Studies Reviewed 1660 
 1661 

Author/Year Study 
Design/N/ 
Country 

Inclusion Criteria Population Clinical Outcomes PET 
Technique/Notes 

Altomare et 
al. 2021 

RCT 
N=136 
Switzerland 

Cognitive complaints 
recruited consecutively 
and evaluated at the 
Geneva Memory Clinic; 
underwent diagnostic 
workup including clinical 
and neuropsychological 
assessments, MRI, and 
amyloid PET and tau 
PET within an ongoing 
prospective research 
study 

Cognitive 
complaints 
recruited 
consecutively 
and 
evaluated at 
the Geneva 
Memory 
Clinic 

Amyloid PET and tau PET, 
when presented as the first 
exam, resulted in a change 
of etiological diagnosis in 
28% 

Amyloid 
Tau PET 

Amariglio et 
al. 2018 

Prospective cohort 
N=279 
US 

Clinically normal Mean age: 
73.4 (6.1) 
Female sex: 
59% 
MMSE: 29 
(1.1) 

Higher baseline SCC 
predicted more rapid 
cognitive decline on 
neuropsychological 
measures among those with 
elevated amyloid 

11C PiB 

Buckley et 
al./2016 

Prospective cohort 
N=288 
Australia 

CN older adults who 
had undergone positron  
emission tomography 
(PET) Ab neuroimaging 

CN Ab- 
Mean age: 
69, female 
sex 54%; CN 
AB+ Mean 
age: 72, 

In CN Amyloid+, subjects 
with high SMD did not 
exhibit significantly greater 
episodic memory decline 
than those with low SMD 

n/a 
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female sex 
50% 

Buckley et al. 
2019 

Cross-cohort 
N=890 
US 

Clinically normal Varies by 
Group 

SCD increased odds of 
Amyloid+ by 1.58 relative to 
non-SCD 

n/a 

Burnham et 
al./2016 

Longitudinal, 
N=573 
Australia 

Cognitively healthy Mean age: 
73.1 (6.2), 
Female:58% 

50 (9%) healthy individuals 
were classified as A+N+, 87 
(15%) as A+N−, 310 (54%) 
as A−N−, and 126 (22%) as 
SNAP. APOE ε4 was more 
frequent in participants in 
the A+N+ (27; 54%) and 
A+N− (42; 48%) groups 
than in the A−N− (66; 21%) 
and SNAP groups (23; 
18%). 

AD pathology was 
determined by 
measuring Amyloid 
deposition by PET, and 
neurodegeneration (N) 
was established by 
measuring hippocampal 
volume using MRI. 

Soleimani-
Meigooni et 
al. 2020 

Prospective cohort 
N= 20 
Unknown 

N/A 
 

Mean age: 
61 
Female sex: 
8 

PET-to-autopsy 
comparisons confirm that 
18F-flortaucipir PET is a 
reliable biomarker of 
advanced Braak tau 
pathology in Alzheimer’s 
disease 

18F-flortaucipir 

Donohue et 
al. 2017 

Prospective cohort 
N=445 
United States and 
Canada 

Baseline Mini-Mental 
State Examination 
(MMSE) scores of 24 to 
30 and Clinical 
Dementia Rating (CDR) 
Global and Memory Box 
scores of 0 

Mean age: 
74.0 (5.9) 
Female sex: 
52% 

Compared with the group 
with normal amyloid, those 
with elevated amyloid had 
worse mean scores at 4 
years on the PACC (mean 
difference, 1.51 points, 
MMSE (mean difference, 
0.56 points and CDR–Sum 
of Boxes (mean difference, 
0.23 points 

11C-PiB) and florbetapir 
 
 
 

 

Dubois et al. 
2018 

Longitudinal 
observational 
N=318 
France 
 

Age 70-85 years with 
subjective memory 
complaints but 
unimpaired cognition 
and memory 

Mean age: 
76 (3.5) 
Mean 
MMSE: 
28.67 (0.96) 

88 (28%) of 318 participants 
showed amyloid β 
deposition and the 
remainder did not. 

18F-florbetapir 

Ebenau et al. 
2020 

Longitudinal 
N=693 
Netherlands 

Labeled as SCD 
 

Mean age: 
60 (9) 
Female sex: 
41% 
MMSE: 28 
(2) 

Fifty-six participants had 
normal Alzheimer disease 
(AD) biomarkers (A–T–N–), 
27% (n = 186) had non-AD 
pathologic change (A–T–N+, 
A–T+N–, A–T+N+), 18% (n 

N/A 
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= 122) fell within the 
Alzheimer continuum (A+T–
N–, A+T–N+, A+T+N–, 
A+T+N+) 

Ghirelli et al. 
2020 

Longitudinal 
N=24 
US 

Participated in the 
Neurodegenerative 
Research Group, had 
18F‐flortaucipir and died 
with FTLD 

N/A Nine cases (37.5%) had 
Amyloid plaques 

18F‐flortaucipir 
Braak staging, Amyloid 
plaque, and 
neurofibrillary tangle 
counts, and 
semiquantitative tau 
lesion scores 
 

Hanseeuw et 
al. 2019 

Prospective 
cohort/Longitudinal 
N=1070 
North America  

N/A Age range: 
55-94 

Amyloid predicted 
longitudinal changes in 
memory awareness, such 
that awareness decreased 
faster in participants with 
increased Amyloid burden. 

Amyloid deposition was 
measured at baseline 
using [18F]florbetapir 
positron emission 
tomographic imaging 

Jansen et al. 
2015. 

Meta-analysis 
55 Studies 
N/A 

Studies were included if 
they provided individual 
participant data for 
participants without 
dementia and used an a 
priori defined cutoff for 
amyloid positivity 

N/A The prevalence of amyloid 
pathology increased from 
age 50 to 90 years from 
10% to 44% among 
participants with normal 
cognition; from 12% to 43% 
among SCI, and from 27% 
to 71% among MCI 

N/A 

Jack Jr. et al. 
2019 

Longitudinal cohort 
N=480 
United States 

Nondemented; had a 
clinical evaluation and 
amyloid positron 
emission tomography 
(PET) (A), tau PET (T), 
and magnetic 
resonance imaging 
(MRI) cortical thickness 
(N) measures between 
April 16, 2015, and 
November 1, 2017, and 
at least 1 clinical 
evaluation follow-up by 
November 12, 2018 

Age range: 
30 - 89 

Among older persons 
without baseline dementia 
followed for a median of 4.8 
years, a prediction model 
that included amyloid PET, 
tau PET, and MRI cortical 
thickness resulted in a small 
but statistically significant 
improvement in predicting 
memory decline over a 
model with more readily 
available clinical and genetic 
variables 

Amyloid PET imaging 
was performed with 
Pittsburgh Compound 
B11 and tau PET with 
[18F]flortaucipir 

Lesman-
Segev et al. 
2020 

Observational 
N=101 
United States 

Enrolled in UCSF 
Memory and Aging 
Center or UCD 

Mean age: 
67.2  
Female sex: 
41 

At autopsy, 32 patients 
showed primary AD, 56 

showed non‐AD 
neuropathology (primarily 

Antemortem 11C-PiB 
and 18F‐ (FDG) 
PiB PET was rated as 
positive or negative for 
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Alzheimer's Disease 
Center 

MMSE: 21.9 frontotemporal lobar 
degeneration [FTLD]), and 
13 showed mixed AD/FTLD 
pathology 

cortical retention, 
whereas FDG scans 
were read as showing 
an Alzheimer disease 
(AD) or non‐AD pattern 
 

Leuzy et al. 
2020 

Diagnostic 
N=613 
Sweden 
 

Participated in the 
Swedish BioFINDER-2 
study 

N/A RO948 F 18 outperformed 
magnetic resonance 
imaging and cerebrospinal 
fluid measures 

RO948 F 18 
 

Lopez et al. 
2018 

Longitudinal 
N=183 
United States 

Age 80 years and older, 
without dementia and 
participated in the Ginko 
biloba memory study 
from 2000 to 2008 

N/A Of the 183 participants, 30% 
were CN, 37% had MCI, 
and 33% were diagnosed 
with dementia at their last 
clinic visit. 

11C PiB 

Ossenkoppele 
et al. 2015 

Meta-analysis 
N= N/A 
Location N/A 

The MEDLINE and Web 
of Science databases 
were searched from 
January 2004 to April 
2015 for amyloid PET 
studies 

Data were 
provided for 
1359 
participants 
with clinically 
diagnosed 
AD and 538 
participants 
with non–AD 
dementia. 
The 
reference 
groups were 
1849 healthy 
control 
participants 
(with amyloid 
PET) and an 
independent 
sample of 
1369 AD 
participants 
(with autopsy 
data). 

The likelihood of amyloid 
positivity was associated 
with age and APOE ε4 
status 

N/A 

Ossenkoppele 
et al. 2018 

Cross-sectional 
N=719 
South Korea, 
Sweden, and the 
United States 

N/A Mean age: 
68.8 (9.2) 
Male Sex: 
48.4% 
 

The use of [18F]flortaucipir 
PET had an estimated 
sensitivity of 89.9% and 
specificity of 90.6% for 

18F flortaucipir 
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Alzheimer disease vs other 
neurodegenerative diseases 

Petersen et al. 
2016 

Longitudinal 
N=564 
United States  

Cognitively normal; 
invited to undergo 
imaging 

N/A At baseline, 179 (31.7%) 
individuals with elevated 
amyloid levels had poorer 
cognition in all domains 
measured, reduced 
hippocampal volume, and 
greater FDG-PET 
hypometabolism. 

N/A 

Petersen et al. 
2019 

Longitudinal 
N=763 
United States 

Enrolled in Mayo Clinic 
Study of Aging (MCSA), 
residents of Olmsted 
County MI, and 
participated in brain 
imaging 
 

N/A 26% were A−N−, 15% were 
A+N−, 30% were A−N+, and 
28% were A+N+ 
 

Pittsburgh Compound B 

Roberts et al. 
2018 

Prospective cohort Participants without 
dementia were 
randomly selected 

Mean age: 
71.3 (9.8) 
Male sex: 
53.4% 
Prevalent 
MCI: 10.7% 

Population-based 
prevalence of amyloid-
positive status and 
progression rates of amyloid 
positivity provide valid 
information for designing AD 
prevention trials and 
assessing the public health 
outcomes of AD prevention 
and interventions 

N/A 

Villemagne et 
al. /2013 

Prospective cohort 
N=200 
Australia 

Healthy controls, 
patients with mild 
cognitive impairment 
(MCI), and patients with 
AD 

HC mean 
age: 73 (7.5); 
MCI mean 
age 73.4 
(8.5); DAT 
mean age: 
71.7(8.9) 

At baseline, significantly 
higher Amyloid burdens 
were noted in patients with 
AD (2·27, SD 0·43) and 
those with MCI (1·94, 0·64) 
than in healthy controls 
(1·38, 0·39) 

11C PiB 

Villemagne et 
al. /2011 

Longitudinal, 
N=206 
Australia 

Participated in the 
Melbourne Healthy 
Aging Study and the 
Austin Health Memory 
Disorders Clinic 

n/a At baseline, 97% of DAT, 
69% of MCI, and 31% of HC 
subjects showed high PiB 
retention. 

11C PiB 

Rowe et al. 
2014 

Prospective cohort 
N=  183 healthy, 
87 MCI 
Australia 

Participated in the 
Australian Imaging, 
Biomarkers, and 
Lifestyle study 

Healthy 
Mean age: 
72 (7.26) 

Thirteen percent of healthy 
persons progressed (15 to 
MCI, 8 to dementia), and 
59% of the MCI cohort 
progressed to probable AD 

11C PiB 
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MCI Mean 
age: 73.7 
(8.27) 
Healthy 
female sex: 
51.9% 
MCI female 
sex: 49.4% 

Donohue et 
al. 2014 

Observational 
N= N/A 
North America and 
Australia 

Eligible participants will 
be 65 to 85 years of age 
at the time of screening, 
with a global Clinical 
Dementia Rating (CDR-
G) score of 0, an MMSE 
score of 27 to 30, and a 
Delayed Recall score on 
the Logical Memory IIa 
subtest of 8 to 15 for 
participants with 13 or 
more years of 
education, or with an 
MMSE score of 25 to 30 
and a Delayed Recall 
score on the Logical 
Memory IIa subtest of 6 
to 13 for participants 
with 12 or less years of 
education 

The 
participants 
analyzed had 
normal 
cognition and 
mean ages 
of 75.81, 
71.37, and 
79.42 years 
across the 3 
studies 

Analyses of at-risk 
cognitively normal 
populations suggest that we 
can reliably measure the 
first signs of cognitive 
decline with the ADCS-
PACC 

Varies 

Knopman et 
al. 2012 

Population-based 
N=296 
United States 

Participated in the Mayo 
Clinic Study of Aging 
diagnosed as cognitively 
normal who underwent 
brain MRI or 
[18F]fluorodeoxyglucose 
and Pittsburgh 
compound B PET, had 
global cognitive test 
scores, and were 
followed for at least 1 
year 

Mean age: 
78 (75-82) 
Female sex: 
130 (44%) 
MMSE: 28 
(27-29) 

Of the 296 initially normal 
subjects, 31 (10%) 
progressed to a diagnosis of 
mild cognitive impairment 
(MCI) or dementia (27 
amnestic MCI, 2 non-
amnestic MCI, and 2 non-
AD dementias) within 1 year 

[18F]fluorodeoxyglucose 
and Pittsburgh 
compound B PET 

Jack Jr. et al. 
2015 

Cross-sectional 
observational 
N=1246 
United States 

Cognitively normal N/A Overall, memory worsened 
from age 30 years through 
the 90s 

11C-PiB 
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Frings et al. 
2018 

Prospective cohort 
N=138 
Location N/A 

Patients referred for 
diagnostic imaging with 
[18F]FDG and [11C]PIB 
PET 

N/A [18F]FDG PET did not 
significantly predict 
conversion to AD 

 18F-FDG and 11C-PiB 
PET 

Jansen et al. 
2018 

Cross-sectional 
N= Normal 2908; 
MCI 4133 
Location Multiple 

Participated in the 
multicenter Amyloid 
Biomarker Study 

N/A Among normal cognition, 
amyloid positively 
associated with low memory 
scores after age 70 but not 
associated with low MMSE. 
Among MCI, amyloid 
positively associated with 
low memory and low MMSE 

N/A 

Kemppainen 
et al. 2013 

Prospective cohort 
N=24 
Finland 

Participated in earlier 
studies at Turku PET 
Centre 

Six patients 
with AD 
(mean age 
71.3), ten 
patients with 
amnestic 
MCI (mean 
age 70.4) 
and eight 
healthy 
control 
subjects 
(mean age 
66.1) 

The MCI group showed a 
significant increase in 
[11C]PIB uptake over time 

11C-PiB 

Lopez et al. 
2014 

Prospective cohort 
N=183 
United States 

Without dementia Mean age: 
85.2 

The prevalence of b-amyloid 
deposition, 
neurodegeneration (i.e., 
hippocampal atrophy), and 
small vessel disease 
(WMLs) is high in CN older 
individuals and in MCI. 

11C-PiB 

Ma et al. 2014 Meta-analysis 
N= 352 (from 11 
studies) 
Location N/A 

Searches from 
MEDLINE (OvidSP), 
EMBASE (OvidSP), 
BIOSIS Previews (ISI 
Web of Knowledge), 
Science Citation Index 
(ISI Web of Knowledge), 
PsycINFO (Ovid SP), 
and LILACS (Bireme) 

N/A The included studies varied 
markedly in how the 11C-
PIBPET scans were 
performed and interpreted 

11C-PIB PET 

Nordberg et 
al. 2012 

Prospective cohort 
N=238 

n/a Control mean 
age: 67.4 

[ 11C]PIB retention in the 
neocortical and subcortical 

11C-PiB 
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Europe (6.3) 
MCI mean 
age: 67.5 
(8.1) 
AD mean 
age: 69.2 
(8.4) 

brain regions was 
significantly higher in AD 
patients than in age-
matched controls 

Ossenkoppele 
et al. 2014 

Longitudinal 
N= AD 41, MCI 28, 
Control 19 
Netherlands 

Underwent 11C–PiB 
and 18F-FDG PET and 
MRI scans at baseline 

Control mean 
age: 64 (9); 
MCI mean 
age 65 (9); 
AD dementia 
mean age 64 
(6) 

Baseline hypometabolism 
and atrophy were 
associated with poorer 
baseline performance on 
attention and executive 
functions 

11C-PiB and 18F-FDG-
PET and MRI 

Trzepacz et 
al. 2014 

Multivariate 
analysis 
N= ADNI 1 data 
United States 

Varies N/A Of the 50 MCI subjects 
included in this study, 20 
(40%) converted 
to Alzheimer’s dementia 
within 2 years (converters) 
and 30 did not 
(nonconverters). 

11C-PiB PET, MRI, and 
18F-FDG-PET 

Lowe 202044 Prospective cohort 
N=26 
United states 

Cognitively impaired 
participants with 
abnormal amyloid based 
on amyloid PET, with 
anamnestic clinical 
presentation, 
participating in Mayo 
Clinical Study of Aging 
who passed away and 
underwent autopsy 

Female sex: 
38% 
Mean age: 
79 (11.2) 
years 
Race: NR 
MMSE: 22 
(7) 
 
 

None (analysis limited to 
persons who died and 
under-went biopsy) 

18F-flortaucipir 
Autopsy with IHC 
staining and BSS 
 
Braak tangle stage ≥4 
and at least a moderate 
neuritic plaque score; or 
Braak tangle stage ≤3, 
at least a moderate 
neuritic plaque score, 
and no more than a 
moderate neuritic 
plaque score 

 1662 
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Appendix E: External Reviewers 1663 
 1664 

The following individuals reviewed and provided feedback on this document prior to submission. 1665 

Table 6: External Reviewers  1666 

External Reviewer Affiliation 

Elizabeth C. Mormino, PhD Wu Tsai Neurosciences Institute, Stanford University, 
Stanford, CA, USA; Department of Neurology and 
Neurological Sciences, Stanford University, Stanford, 
CA, USA. 

Val Lowe, MD Departments of Radiology, Mayo Clinic, Rochester, 
Minnesota, USA. 

Philip Scheltens, MD, PhD Alzheimer Center Amsterdam, Neurology, Vrije 
Universiteit Amsterdam, Amsterdam UMC location 
VUmc, Boelelaan 1118, 1081, HZ, Amsterdam, The 
Netherlands. 

Chris Rowe, MD 
 

Department of Molecular Imaging Research, Austin 
Health, Melbourne, Australia. 

Henryk Barthel, MD, PhD 
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Appendix F: Abbreviations 1668 
 1669 

ADNC Alzheimer’s disease neuropathological changes 

AA Alzheimer’s Association 

AD Alzheimer’s Disease 

APP Amyloid precursor protein 

Aβ Amyloid-βeta 

APOE4 Apolipoprotein ε4 

AUC Appropriate Use Criteria 

CMS Centers for Medicare and Medicaid Services 

CL Centiloids 

CSF Cerebrospinal fluid 

CU Cognitively unimpaired 

COI Conflicts of interest 

CERAD Consortium to Establish a Registry for Alzheimer's Disease 

CBS Corticobasal syndrome 

DLB Dementia with Lewy Bodies 

DIAD Dominantly inherited Alzheimer’s Disease 
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FTP Flortaucipir 

FDG Fluorodeoxyglucose 

FDA Food and Drug Administration 

FTD Frontotemporal dementia 

FTLD Frontotemporal lobar degeneration 

GRADE Grading of Recommendations, Assessment, Development, and Evaluations 

IDEAS Imaging Dementia—Evidence for Amyloid Scanning 

I-131 MIBG Iodine-131 meta-iodobenzylguanidine 

DLB Lewy bodies 

LATE Limbic-predominant age-related TDP-43 encephalopathy 

lvPPA Logopenic-variant of primary progressive aphasia 

MRI Magnetic resonance imaging 

MCI Mild cognitive impairment 

MMSE Mini-mental state exam 

NFTs Neurofibrillary tangles 

NIA-AA National Institute on Aging and Alzheimer’s Association 

NINCDS-
ADRDA 

National Institute of Neurological and Communicative Disorders and Stroke 
and the Alzheimer's Disease and Related Disorders Association 

OHSU Oregon Health & Science University 

PDD Parkinson’s disease with dementia 

P-tau Phosphorylated tau 

PiB Pittsburgh Compound-B 

PICOTS Population, Interventions, Comparisons, Outcomes, Timing, and Settings 

PET Positron Emission Tomography 

PCA Posterior cortical atrophy 

PSEN1 Presenilin-1 

PSEN2 Presenilin-2 

REM Rapid eye movement 

SPECT Single photon emission computed tomography 

SNMMI Society of Nuclear Medicine and Molecular Imaging 

SUVR Standardized uptake value ratio 

SCD Subjective cognitive decline 

TDP-43 TAR DNA-binding protein 43 

US United States 
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