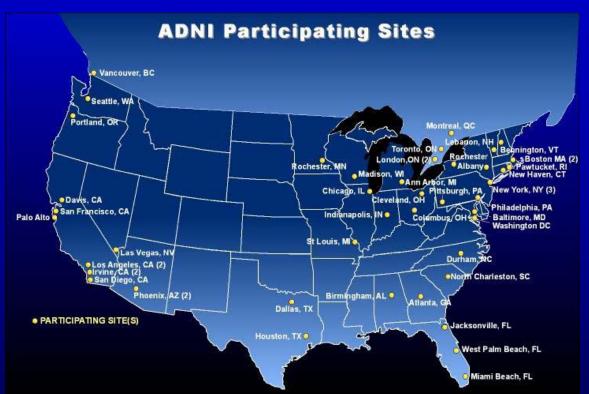


FUNDED BY NATIONAL INSTITUTE ON AGING NIBIB,NIMH,NINR,NINDS,NCRR,NIDA and CIHR

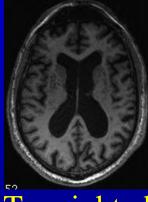
M. Weiner, P. Aisen, R Petersen, C. Jack, W. Jagust, J Trojanowski, L. Shaw, A. Toga, L. Beckett, D. Harvey, M. Donohue, R. Green, A. Saykin, J. Morris, N. Cairns, L. Thal (D)

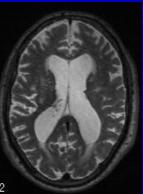
John Hsiao, Neil Buckholz, Jesse Cedarbaum


Private Partners Scientific Board (PPSB)

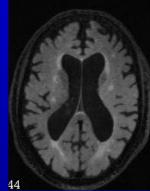
And Site PIs, Study Coordinators and over 1500 subjects enrolled in 58 Sites in US and Canada

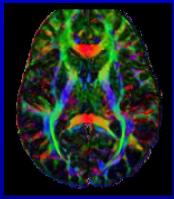
Naturalistic study of AD progression

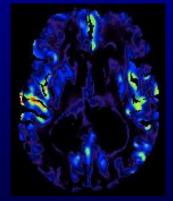

- 350 NORMAL
- 150 SUB MEM C.
- 850 MCI
- 350 AD
- 57 sites
- Clinical, blood, LP
- Cognitive Tests
- MRI: all types
- FDG/amyloid PET
- LP CSF Ab/tau
- Genetics

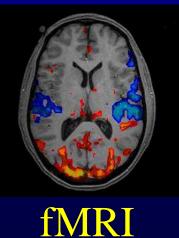

All data in public database: USC/LONI/ADNI: No embargo of data

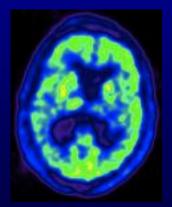
ADNI2 Multimodality Neuroimaging

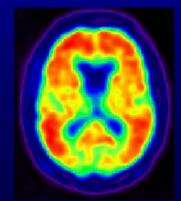

Structural imaging




T₂ weighted


FLAIR




DTI

ASL MRI

FDG PET Amyloid PET

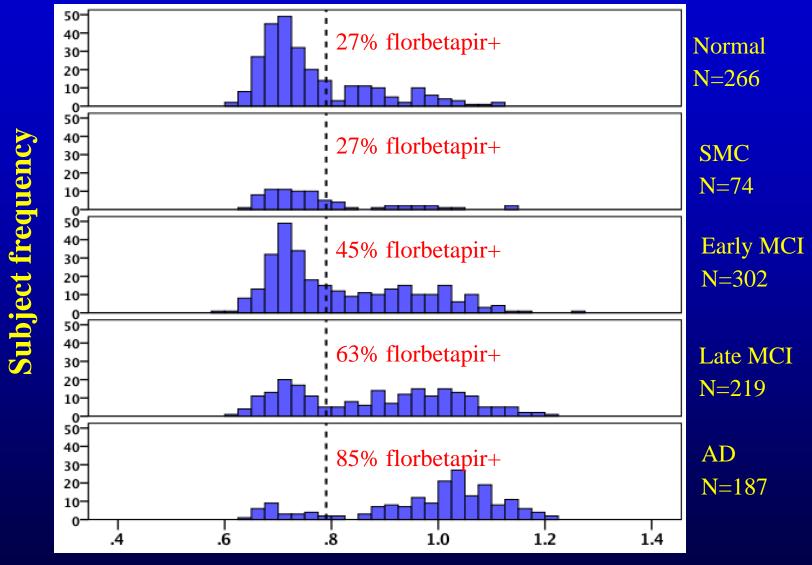
CONTRIBUTIONS OF ADNI

- Standardized methods for clinical trials
- Large multisite study amyloid imaging
- Acceptance of LPs
- MRI across vendors/ADNI phantom
- Data sharing without embargo: a model
- Data used for trial design: eg A4 and others
- GWAS and WGS
- World wide ADNI
- tau PET (in DOD ADNI)
- ADNI 3

OTHER ADNI or ADNI-LIKE PROJECTS

- DOD ADNI, DOD MCI ADNI, DOD Tau PET ADNI: 400 subjects total
- Depression ADNI
- Parkinson Progression Markers Initiative (PPMI)
- TRACK TBI
- DIAN

Florbetapir and PIB in ADNI PiB 0.94 Normal control Florbetapir 1.01 PiB 2.17 **AD** patient Florbetapir 2.01

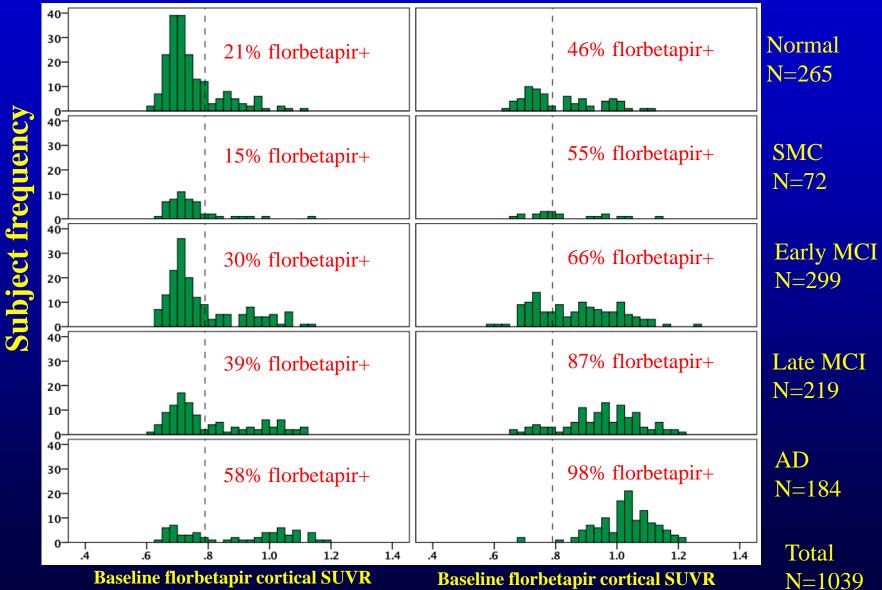

MEASUREMENT OF AMYLOID AND TAU IN CEREBROSPINAL FLUID

AD (n=102)	Tau	Α β ₁₋₄₂	P-Tau _{181P}	Tau/A β ₁₋₄₂	P-Tau_{181P}/A β ₁₋₄₂
	122±58	143±41	42±20	0.9±0.5	0.3±0.2
MCI (n=200)					
	103±61	164±55	35±18	0.8±0.6	0.3±0.2
NC (n=114)					
Mean±SD	70±30	206±55	25±15	0.4±0.3	0.1±0.1

p<0.0001, for each of the 5 biomarker tests for AD vs NC and for MCI vs NC.

For AD vs MCI:p<0.005, Tau; p<0.01, $A\beta_{1-42}$; p<0.01, P-Tau _{181P}; p<0.0005, Tau/A β_{1-42} ; p<0.005, P-Tau _{181P}/A β_{1-42} . Mann-Whitney test

Amyloid PET status by diagnosis


Baseline florbetapir cortical SUVR

Total N=1048

Florbetapir by APOE4 status

APOE4+

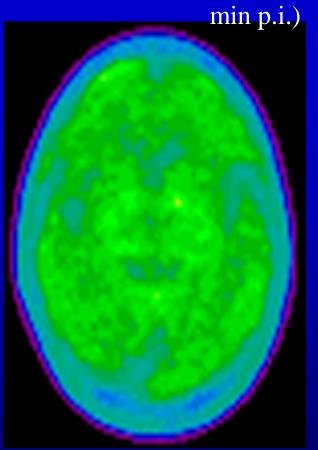
EFFECTS OF AMYLOID STATUS ON CONVERSION RATE

- Conversion of MCI to AD dementia in 2-3 years
- 25% of MCI who were amyloid +
- 2% of MCI who were amyloid-
- Conclusion: amyloid in the brain predicts faster decline and conversion to dementia!
 - This applies to normal subjects, subjects with MCI, and subjects with dementia!
- Therefore clinical trials are helped by "amyloid phenotyping"

PLANNING FOR ADNI3

- NIA and Pharma have expressed interest in continuing ADNI: ADNI 3 2016-2021
- Continue to follow existing subjects
- Add tau PET
- Multimodality MRI at all sites
- Mass spec analysis of CSF Abeta
- Computer based neuropsych testing

EMERGING IMPORTANCE OF TAU PET SCANS

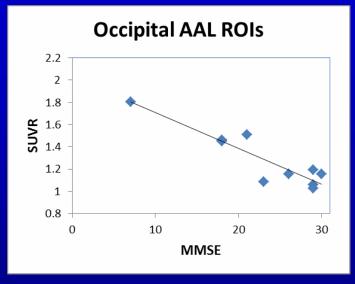

- Many autopsy pathology studies have shown that tau tangles highly correlate with
 - Synapse loss
 - Neuron loss
 - Memory loss, cognitive decline
- Tau can be measured in cerebrospinal fluid
- Tau can now be detected by PET scans

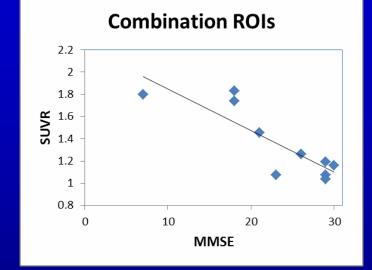
[18F]-T807 PET (80-100

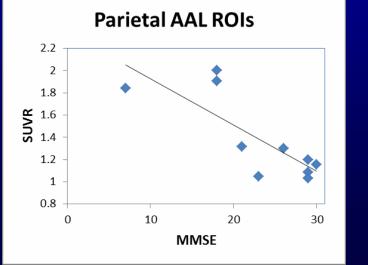
3.5

rSUV

(Target/Cerebellum)




Healthy Control (58 years old)


Alzheimer' s Disease Subject (72 years old, MMSE = 7)

Chien, D. T.; Kolb, H.C. et al. J. Alzheimer's Disease, 2012, 34, 457-468Xia, C.F.; Kolb, H.C. et al. Alzheimer's & Dementia, 2012, in pressZhang, W.; Kolb, H.C. et al. J. Alzheimer's Disease 2012, 31, 601-612

Relationship of MMSE to T807 Uptake by Region: All Subjects

Region	Correlation		
Occipital	-0.918		
Parietal	-0.798		
Combo	-0.854		

ADNI DATA SHARING

- All ADNI raw and processed data is shared on the internet with no embargo
- UCLA/LONI/ADNI under direction of Dr Arthur Toga
- ADNI has resulted in 636 manuscripts, 329 of which are now published
- Data widely used for design of clinical trials
- This unprecedented data sharing is a model for future science

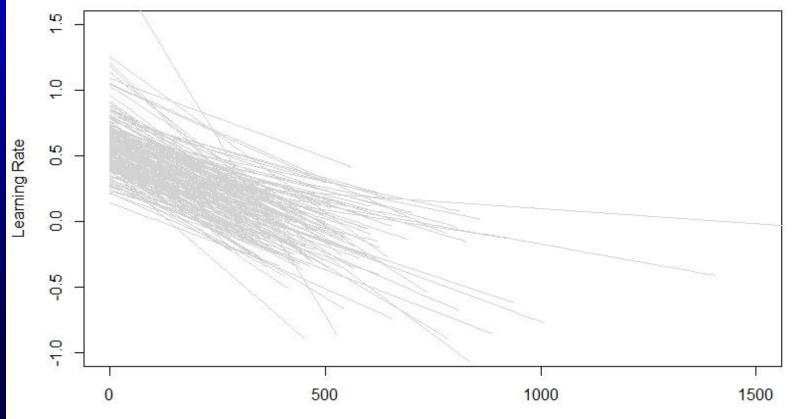
OBSTACLE TO EFFECTIVE TREATMENTS

- The high costs of clinical trials
- Solution: subject recruited, assessed, screened and longitudinal monitored on the internet
- A pool of longitudinally monitored subjects
- Using a website greatly reduces costs

The Brain Health Registry:

An Internet-Based Registry for

Recruitment, Assessment, & Longitudinal Monitoring


for Clinical Neuroscience Research

COGSTATE RESULTS ON 2500 SUBJECTS

_		_		Unadjusted	Full Model	
	Data	Response	Predictor	p-value	Estimate	p-value
1	Cogstate	Working Memory	Age	< 0.001	0.03	< 0.001
2			Gender	0.21	0.01	< 0.001
3			Education	0.54	-0.005	0.30
1			Family History	< 0.001	0.005	0.11
5			Memory Problem	0.02	0.03	0.001
6			Memory Concern	< 0.001	0.009	0.007
7		Attention	Age	< 0.001	0.02	< 0.001
8			Gender	0.70	0.004	0.13
9			Education	0.93	-0.01	0.01
10			Family History	< 0.001	0.004	0.06
11			Memory Problem	< 0.001	0.03	< 0.001
12			Memory Concern	< 0.001	0.01	< 0.001
13		Learning	Age	< 0.001	-0.03	< 0.001
14		-	Gender	0.001	0.007	0.13
15			Education	0.01	0.03	< 0.001
16			Family History	0.72	0.006	0.21
17			Memory Problem	< 0.001	-0.05	< 0.001
18			Memory Concern	0.001	-0.02	< 0.001
19		Psychomotor	Age	< 0.001	0.03	< 0.001
20			Gender	< 0.001	0.03	< 0.001
21			Education	0.41	-0.005	0.2
22			Family History	0.001	-0.001	0.76
23			Memory Problem	0.001	0.04	< 0.001
24			Memory Concern	< 0.001	0.01	0.003
25	Lumos	GoNoGo	Age	< 0.001	31.32	< 0.001
26	Lamos	0011000	Gender	0.009	16.51	< 0.001
27			Education	0.55	-5.00	0.30
28			Family History	0.007	-0.03	0.11
29			Memory Problem	0.007	25.19	0.001
30			Memory Concern	< 0.001	15.28	0.007
31		Memory Span	Age	< 0.001	-0.46	< 0.001
32		Memory Span	Gender	0.36	-0.17	0.13
33			Education	0.09	0.19	0.01
34			Family History	0.001	-0.05	0.06
35			Memory Problem	0.002	-0.42	< 0.001
36				0.002	-0.42	< 0.001
30 37		Barrana Marrana Saan	Memory Concern	< 0.002		< 0.001
38		Reverse Memory Span	Age Gender	0.39	-0.58 -0.21	0.13
39 39			Education		0.17	<0.13
				0.35		
10			Family History	0.008	-0.02	0.21
1			Memory Problem	0.12	-0.29	< 0.001
12		The P	Memory Concern	0.01	-0.10	< 0.001
13		Trails B	Age	< 0.001	10639	< 0.001
44			Gender	0.03	-891	< 0.001
45			Education	< 0.001	-8050	0.2
46			Family History	< 0.001	2702	0.76
47			Memory Problem	0.02	2882	< 0.001
48			Memory Concern	< 0.001	6631	0.003

EXISTING DATA SET OF LONGITUDINAL COMPUTER GAME SCORES:LUMOSITY

LOWER 25TH OF DECLINING ELDERS

Current PPSB Partners

ADNI IS FUNDED BY NIA

These slides and much more at ADNI-INFO.ORG

All data at www.loni.ucla.edu/ADNI/