Prazosin Reduces Disruptive Agitation in Dementia

Elaine R. Peskind, M.D.
Friends of Alzheimer’s Research Professor, Department of Psychiatry and Behavioral Sciences
University of Washington School of Medicine
Associate Director
University of Washington
Alzheimer’s Disease Research Center
Co-Director, VA Northwest Network
Mental Illness Research, Education, and Clinical Center, Seattle, WA

Disruptive Agitation: What is it?

- Distressing behaviors that often cluster together:
 - irritability
 - uncooperativeness with necessary care
 - anger outbursts, aggression
 - sleep disruption
 - pressured pacing and restlessness

Why is it Important to Treat Disruptive Agitation in AD

- Patient is distressed.
- Caregivers are distressed.
- Ability to provide care is compromised.
- Behavior can pose a threat of harm to self and others.
- Behavior contributes to functional disability.
- Increases rate of decline.

Psychosis in AD Differs Phenomenologically from Psychosis in Schizophrenia

- Hallucinations
 - visual
 - simple
 - memory loss-related
- Delusions
 - auditory
 - complex
 - bizarre

Atypical Antipsychotic Drugs in AD: Pros

- Antipsychotics are the only drug class demonstrated effective.
 - largest data base for risperidone and olanzapine
- Better tolerated than typicals re: reduced parkinsonism; as effective; more costly.
- Atypicals’ “metabolic problems” less concern in very elderly.

Atypical Antipsychotic Drugs in AD: Cons

- Antipsychotic drug studies in AD with psychosis and “aggression” modestly positive for agitation/aggression, but not “psychosis”.
- Effect sizes are small to moderate and nonresponder rate is substantial.
- Antipsychotics not effective for visual hallucinations and simple delusions of theft.
- Small increased risk of stroke and mortality likely secondary to excessive sedation.\(^1,2\)

Placebo-Controlled Trials of Antipsychotics for Psychosis and Agitation in AD

- **Risperidone**
 - 1-2 mg/day more effective than 0.5 mg/day or placebo in 625 patients with AD in the nursing home setting
 - dose-related increases in somnolence, EPS, and peripheral edema
 - no significant decrements in cognition or self-care

Risperidone Effects on Clinical Global Impression of Change (CGIC) in Nursing Home Residents with AD

<table>
<thead>
<tr>
<th>Risperidone 1 mg/day</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2 (minimally improved to unchanged)</td>
<td>4.2 (unchanged to minimally worse)</td>
</tr>
</tbody>
</table>

Placebo-Controlled Trials of Antipsychotics for Psychosis and Agitation in AD (cont.)

- **Olanzapine**
 - mean dose of 2.4 mg/day not more effective than placebo in 238 outpatients with AD
 - 5-10 mg/day more effective than 15 mg/day or placebo in 206 nursing home patients with AD
 - Increased death in olanzapine subjects associated with sedation

Olanzapine Effects on Neuropsychiatric Inventory (NPI) in Nursing Home Residents with AD

<table>
<thead>
<tr>
<th>Change in NPI Score from baseline to study end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olanzapine</td>
</tr>
<tr>
<td>-18.7</td>
</tr>
</tbody>
</table>

Dementia with Lewy bodies

- Second or third most common type of dementia after AD.
- Parkinsonian signs and symptoms
- Early psychotic symptoms (especially visual hallucinations).
- Fluctuating cognition.
- Neuroleptic sensitivity - even some atypicals.
- Rivastigmine FDA approved for DLB.

The Brain Noradrenergic System

- The noradrenergic system is the brain “adrenaline” system for attention and arousal.
- Excessive noradrenergic outflow and/or responsiveness produces anxiety and agitation.
- Does excessive noradrenergic activity contribute to agitation in AD?
Noradrenergic System Pathology in Alzheimer’s Disease

• Despite loss of noradrenergic locus coeruleus neurons there is:
 » increased cerebrospinal fluid (CSF) norepinephrine (NE) in AD\(^1\)
 » increased agitation response to NE in AD\(^2\)

\(^2\)Peskind, et al., Arch Gen Psychiatry, 1995

CSF Norepinephrine: Effects of Aging and AD

• In animal studies, partial denervation of the locus ceruleus causes compensatory upregulation of norepinephrine (NE) biosynthetic capacity in surviving locus ceruleus neurons.

• Does this phenomenon occur in AD and DLB?

• Locus ceruleus NE biosynthetic capacity antemortem can be estimated by measuring tyrosine hydroxylase mRNA in postmortem brain tissue.

• We found increased TH mRNA/LC neuron at all levels of LC in AD (\(n = 15\)) and DLB (\(n = 15\)) compared to nondemented older controls (\(n = 17\)).

\(^\ast\)significantly higher than young subjects
\(^\ast\ast\)significantly higher than all other subject groups

In AD and DLB, surviving noradrenergic neurons are compensating by increasing the mRNA expression of the rate-limiting enzyme in the synthesis of NE at multiple levels of the LC.

We Stimulated Brain Noradrenergic Systems With the Drug Yohimbine

- We measured CSF NE responses to placebo or yohimbine in 9 AD (MMSE = 14 ± 2), 10 normal older, and 17 normal young subjects.
- We measured behavioral responses using Brief Psychiatric Rating Scale (BPRS) items “tension”, “excitement”, “anxiety”.

Change in CSF NE Concentrations Between Placebo and Yohimbine Conditions

* significantly higher than young subjects

Effects of Yohimbine Administration on Tension, Excitement, and Anxiety Ratings

Postsynaptic Adrenergic Receptor Antagonists for Agitation in AD

- Enhanced agitation response to adrenergic stimulation in AD.
- Would reducing brain responsiveness to NE by adrenergic receptor blockade reduce agitation in AD?
- Only one antagonist for each receptor crosses the blood-brain barrier:
 - beta receptor antagonist: propranolol.
 - alpha, receptor antagonist: prazosin.

Peskind, et al., Arch Gen Psychiatry 1995.

Beta receptor antagonists in AD

- Would reducing brain responsiveness to NE by CNS active adrenergic receptor antagonist reduce agitation in AD?
- Beta receptor antagonist: propranolol.
 - Two open-label studies suggest propranolol reduces disruptive agitation in dementia.
 - Increased density of postsynaptic beta-adrenergic receptors in cerebellum in AD patients with antemortem aggression.

Propranolol for Agitation in Nursing Home Residents with AD

- Thirty-one AD nursing home patients
- Treatment resistant disruptive agitation, severe to very severe
- Age 85 ± 8 years
- Propranolol X 6 weeks, 10-40 mg tid (30-120 mg/day)
- Well-tolerated

Propranolol for Agitation in Dementia

- Effective and well tolerated “adjunct” in antipsychotic nonresponders.
- Unfortunately, improvement not sustained at 6-month follow-up.
- High rate of medical exclusions.

3H Prazosin Binding - Hippocampus

- control (n = 17)
- AD (n = 15)
- AD/PD (n = 22)

3H Prazosin Binding - Prefrontal Cortex

- control (n = 17)
- AD (n = 15)
- AD/PD (n = 22)

3H Prazosin Binding - Temporal Cortex

- control (n = 17)
- AD (n = 15)
- AD/PD (n = 22)

Open-Label Trial of Prazosin for Agitation in AD Nursing Home Residents

- Eleven AD nursing home residents.
- Treatment resistant disruptive agitation, severe to very severe.
- Age = 84 ± 5 years.
- Prazosin for 8 weeks, 1-5 mg/day.
- Well-tolerated.

Prazosin for Disruptive Agitation in Dementia: Rationale

- Increased expression of postsynaptic alpha-1 adrenergic receptor in prefrontal cortex in AD.
- alpha-1 receptor antagonist: prazosin.
 - long lasting benefits in posttraumatic stress disorder³
 - would prazosin be helpful in AD?

Prazosin Side Effect Profile

- Non-sedating.
- Does not cause pseudoparkinsonism.
- Blood pressure reduction possible.
Open-Label Trial of Prazosin for Agitation in AD Nursing Home Residents

CGIC (8 weeks)

- markedly improved: 1
- moderately improved: 2
- minimally improved: 3
- no change: 4
- minimally worse: 5
- moderately worse: 6
- markedly worse: 7

Placebo-Controlled Trial of Prazosin for Disruptive Agitation in Dementia

- Twenty-two persons (mean age 81 ± 11 years) with DSM-IV dementia (possible or probable AD) and frequent disruptive agitation.
- Randomized to prazosin (n=11) or placebo (n=11) for 8 weeks.
- Prazosin dose range 2-6 mg/day (mean dose 5.7 ± 0.9 mg/day).
- Primary outcome measures: NPI, BPRS CGIC.

Placebo-Controlled Trial of Prazosin for Disruptive Agitation in Dementia: NPI

Placebo-Controlled Trial of Prazosin for Disruptive Agitation in Dementia: BPRS

Adverse Events Were Similar for Prazosin and Placebo Groups

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Prazosin group</th>
<th>Placebo group</th>
<th>Both groups combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedation</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Confusion</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Hypotension</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Dizziness on Standing</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Conclusions

• Prazosin may be effective for the treatment of disruptive agitation in AD.
• Prazosin is generally well-tolerated.
• Larger placebo-controlled efficacy trials of prazosin for disruptive agitation are needed.