A New Genetic Test for Alzheimer’s Disease and Dementia Risk – with transformational potential
variaTECT™ and SNPfitR™ provide an accurate genetic blood test for the assessment of Alzheimer’s Disease risk.

Best in class genotyping platform with one software solution offering two analysis options for amyloid PET positivity:

1. Assist Pharma in stratifying trial subjects
2. Support academic research
3. Clinical test for physicians

95% Amyloid Positive Predictive Value
Biomarkers are crucial to the early identification of Alzheimer’s Disease

“Genetic analysis is the most effective way of deciding who should be assessed for early disease”
– Professor John Hardy

Detection of early changes is key:
Working at the molecular level

- PET Imaging:
 Very expensive and limited availability

- Lumbar Puncture:
 Invasive and high risk; limited reproducibility

Brain Amyloid Imaging
PET – Positron Emission Tomography

Lumbar Puncture
CSF – amyloid and tau fragments
A polygenic risk score (PRS) algorithm is a sum of genetic risk
1. Comprehensive AD SNP genotyping array
2. Amyloid stratification PRS algorithm
3. genoTOR PRS algorithm for identification of clinical AD risk

Accuracy

80%

60%

ApoE
GWAS
CYTOX + Affymetrix

Existing
New
The *variaTECT™* SNP array: ~130,000 SNPs

The *variaTECT™* panel is the most comprehensive panel available for the detection of Alzheimer’s Disease informative SNPs, comprising novel and known variants in genes pertaining to pathways implicated in Alzheimer Disease aetiology.

AD-associated genes implicated in:-
- Amyloid pathway
- Cholesterol metabolism
- Inflammation and Innate Immunity
- Endocytosis and recycling

GWAS and Academic Literature
- 12 Unique GWAS cohorts
- IGAP consortium cohort
- UKBB data

mTOR
- downstream pathway

WES data: highly phenotyped clinical samples
- Cytox
- University of Birmingham
- AIBL data

cytox
affymetrix
Two basic models:
- **Hypothesis-driven variant selection (Model 1)**
- **Hypothesis-free variant selection (Model 2)**

All PRS models trained in PET-amyloid (or CSF) – confirmed cases and controls

Blind validation of models in clinically assessed, post-mortem, pathology-confirmed cases and controls

Training and test clinical samples:
- AIBL Simon Laws, Colin Masters, Larry Ward
- INSIGHT Harald Hampel, Bruno Dubois, Simone Lista
- KU Leuven Rik Vandenberghe, Isabelle Cleynen

Validation Samples:
- UPenn (Brain Bank) John Trojanowski, Virginia Lee, Vivianna Van Deerlin, David Irwin
Training set description

Age (mean) 72.82
Age (range) 55-93
Method of amyloid analysis PET/CSF
Sample Size 703
Gender ratio M:F 296:407
Ethnicity Caucasian

| % Amyloid +ve | 35% |
| ApoE4 carrier | 31% |

Clinical Diagnosis
- Cognitively Normal 76%
- MCI 9%
- Alzheimer’s Disease 15%

n= 703
n= 300

1^st Cohort 1003 QCed individuals

n= 810
n= 361
n= 122

Training Set
Test Set
The image contains the following data:

- **Sample Size**: 300
- **% Amyloid +ve**: 34%
- **ApoE4 carrier**: 35%

Clinical Diagnosis

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitively Normal</td>
<td>71%</td>
</tr>
<tr>
<td>MCI</td>
<td>12%</td>
</tr>
<tr>
<td>Alzheimer's Disease</td>
<td>17%</td>
</tr>
</tbody>
</table>

Model Performance

<table>
<thead>
<tr>
<th>Model</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>AUC</th>
<th>PPV_33</th>
<th>NPV_33</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.55%</td>
<td>72.73%</td>
<td>78.93%</td>
<td>80.12%</td>
<td>63.62%</td>
</tr>
<tr>
<td>2</td>
<td>86.29%</td>
<td>86.22%</td>
<td>94.35%</td>
<td>89.07%</td>
<td>82.85%</td>
</tr>
</tbody>
</table>
Pathology Confirmed Samples from UPenn

(blinded analysis results)

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>237</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Amyloid +ve</td>
<td>88%</td>
</tr>
<tr>
<td>ApoE4 carrier</td>
<td>50%</td>
</tr>
</tbody>
</table>

Clinical Diagnosis

- Cognitively Normal	30%
- MCI	4%
- Alzheimer’s Disease	53%
- Other dementia	13%

<table>
<thead>
<tr>
<th>Model</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>AUC</th>
<th>PPV33</th>
<th>NPV33</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.80</td>
<td>0.80</td>
<td>85.55%</td>
<td>95.78%</td>
<td>41.22%</td>
</tr>
<tr>
<td>2</td>
<td>0.72</td>
<td>0.72</td>
<td>75.12%</td>
<td>91.51%</td>
<td>37.98%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model name</th>
<th>False positive rate</th>
<th>False negative Rate</th>
<th>True Positive rate</th>
<th>True Negative Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52</td>
<td>4.808</td>
<td>95.192</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>33.173</td>
<td>66.827</td>
<td>76</td>
</tr>
</tbody>
</table>
• Two basic models: Hypothesis-driven and Hypothesis-free variant selection

• Blind validation of models:-
 • True Positive Rate of 95% or greater
 • True Negative Rate around 76% is possible

• Models yield results significantly better than what is currently available in both ApoE4 negative cohorts and ApoE4 mixed cohorts

Level of performance consistent with potential utility in population stratification in clinical trials
Ongoing optimisation of PRS amyloid algorithms in MCI cohorts

PRS Algorithm locked for CLIA/LDT verification and validation:
- Research version available for collaboration today
- PRS Algorithm lock: 3Q 2017
- RUO Assay in CLIA-compliant lab: 4Q 2017
Collaborative opportunities

- Multiple PRS algorithms offering high overall accuracy for prediction of amyloid status
- World-class scientific team
- Opportunities for true collaborative partnerships

1. Stratification for clinical trials – savings in cost and time
2. Drug responder profiling – clinical trial optimisation
3. Companion Diagnostic approaches

Next steps…
Genetics and Alzheimer’s Disease Expertise

Experienced Management Team

Dr Andrew Carr (Chairman)
- GE Healthcare; Thermo Fisher; Teraview; deltaDOT; Akubio

Dr Richard Pither (CEO)
- GE Healthcare; Lorantis; UCB-Celltech – Alzheimer’s

Dr Kevin Banks (Business Strategy and Marketing)
- ADI; Affymetrix – Genetic assay platforms

Dr Alex Gibson (Business Development)
- GE Healthcare Business Development – Alzheimer’s

Dr Jonathan Wilde (Clinical Product Development)
- Veracyte; Astra-Zeneca – Genetic products

Dr Greg Davidson (Software Engineering and Regulatory)
- Quotient Diagnostics – regulated software

World-Class Scientific Partners

Prof John Hardy
- Chair of Molecular Biology of Neurological Disease at the UCL Institute of Neurology

Dr Maryam Shoai
- Post-doctoral Expert in Genetic Statistics, UCL Institute of Neurology

Dr Zsuzsa Nagy
- Institute of Inflammation and Ageing, University of Birmingham

Profs Colin Masters, Simon Laws, Ian Cooke
- AIBL (The Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing)

Profs Harald Hampel and Bruno Dubois
- Neurological Institute of the University Salpêtrière Hospital in Paris, UPMC

Profs Rik Vandenberghe and Isabelle Cleynen
- Research Group Experimental Neurology, KU, Leuven

Profs John Trojanowski, Vivianna Van Deerlin and Virginia Lee
- University Pennsylvania