

Comparative Multi-omics for Generating New Disease Insights and Novel Target Discovery

Nilüfer Ertekin-Taner, M.D., Ph.D. Professor of Neurology and Neuroscience Mayo Clinic Florida

NIA-AA Symposium Enabling Precision Medicine for Alzheimer's Disease Through Open Science July 19th, 2018

Acknowledgements

Ertekin-Taner Lab

Mariet Allen* Minerva Carrasquillo* Xue Wang*

Thuy Nguyen
Sarah Lincoln
Kim Malphrus
Joseph Reddy
Samantha Strickland
Tulsi Patel
Olivia Conway
Helene Moral

Jez Burgess
Lili N'songo
Michaela Kachadoorian
Joanna Siuda
Morgane Corda
Jenny Bredenburg

Neuroscience/ Neurology

Steven G. Younkin
Dennis Dickson
Neil Graff-Radford
Ronald C. Petersen

Health Sciences Research

Yan Asmann Julia Crook Dan Serie

Research IT

Curt Younkin Andy Cook

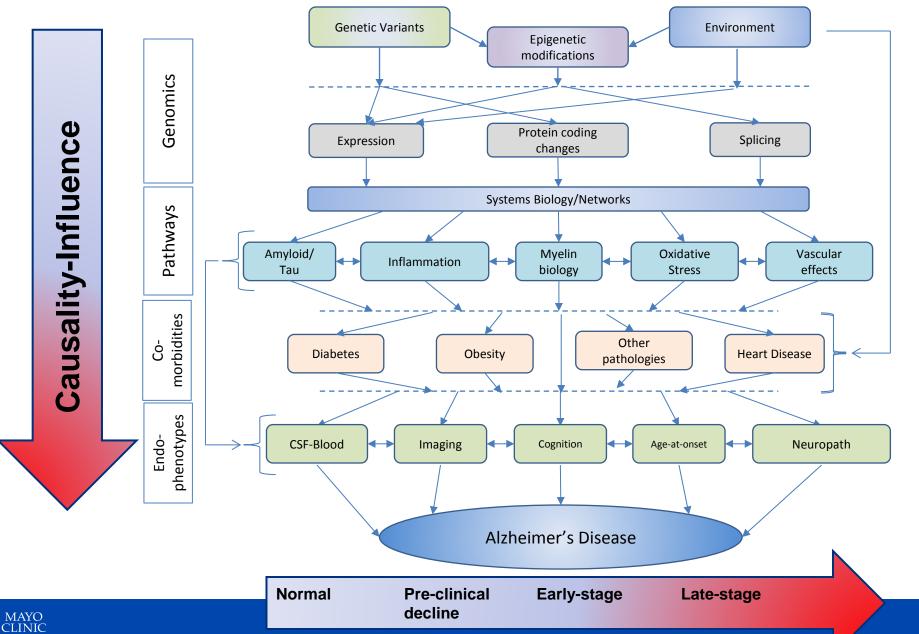
AMP-AD U01 University of Florida Todd Golde

Jada Lewis
Paramita Chakrabarty
Yona Levites

Institute for Systems Biology Nathan Price

Cory Funk Hongdong Li

Tom Beach (Banner)


M²OVE-AD RF1 Guojun Bu

Kejal Kantarci Alfredo Quiñones-Hinojosa

Nji Nijkem Jens Watzlawik Charlotte Ho Xin Que

Model: From Genomics to Molecular Mechanisms

Aims: AMP-AD U01 AG046193

Original Aim 1: To detect transcript alterations in innate immunity genes in mice and humans.

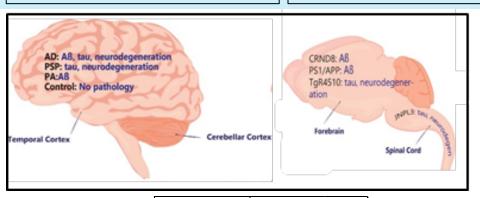
- -RNAseq human and mice brains.
- -Differential expression.

MAYO

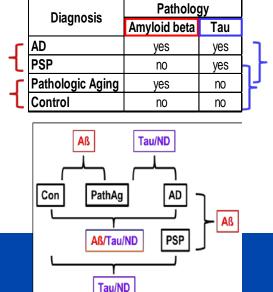
CLINIC

- -Protein/Nanostring validation
- -Expression quantitative trait loci (eQTL).

Original Aim 2: To assess AD risk conferred by variants in innate immunity genes from Aim 1.

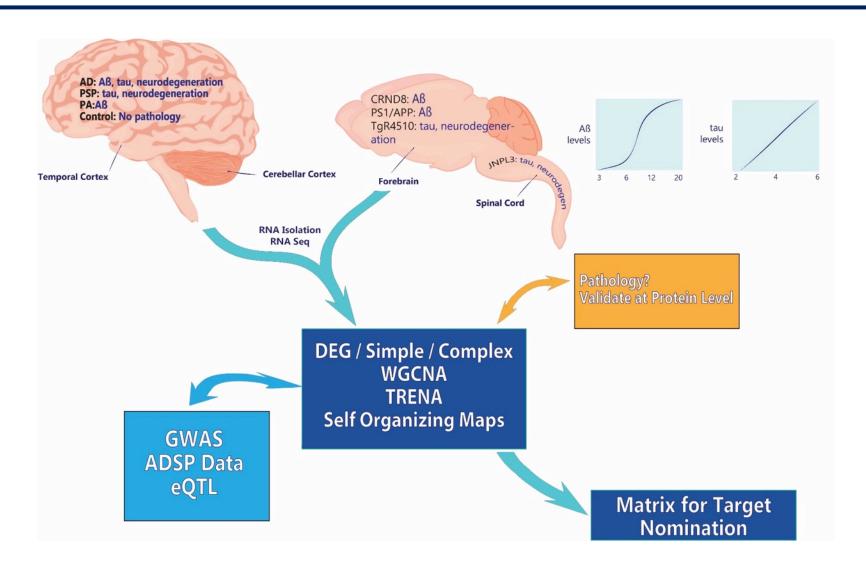

- -Test eQTL for effects on AD risk
- -Functionally annotate AD risk variants for effects on gene expression.
- -Transcription factor networks.

Original Aim 3: To manipulate innate immune states in vivo.


- -rAAV based genetic manipulation in mice and cells.
- -Evaluate Aß, tau, neurodegeneration outcomes in model systems.

Original Aim 4: To determine outcome of gene manipulation in wild type mice.

Behavioral studies in nontransgenic mice.



- Pathologic specificity (Tau vs. Amyloid),
- Regional specificity (CER vs. TCX)
- Temporal change (Mouse expression)
- Cell composition dependent vs. not
- Differential expression, intron retention, networks
- Integrative –omics analysis (expression, genetic variants, protein)

Approach: Target Discovery

Data Generation

Human RNAseq: n= 555

Tissue Source	Tissue	•				
rissue source	Region	ΑD	PSP	Path Aging	Control	Total
Mayo Clinic Brain Bank (Dennis Dickson)	TCX	84	84	0	31	199
BannerSunHealth (TomBeach)	5	0	0	29	49	78
Mayo Clinic Brain Bank (Dennis Dickson)	CER	86	84	0	34	204
BannerSunHealth (TomBeach)	CER	0	0	28	46	74

rTG4510: n=36 P301L: n=24 APPPS1: n=24 CRND8: n=88

Mayo Clinic Florida

University of Florida

Trizol+Qiagen RNeasy Dnase + Agilent QC

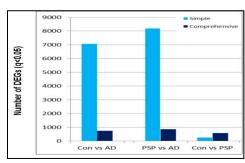
Mayo Clinic Medical Genome Facility: TruSeq Library + Illumina HiSeq2000 (101 bp, PE, 3 samples/lane)

Systems Biology

ISB - SNAPR alignment -Filter by Phred scores normalize to CPM

Mayo – MAPRSeq Pipeline CQN normalization – Variant calls

Data Analysis

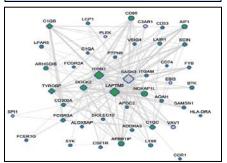

Data **Processing**

Data QC and sources of variation

Profiling (DEG)

Human and mouse brain transcript profiling

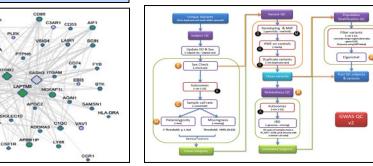
Cell type composition analyses



Networks

Co-expression networks

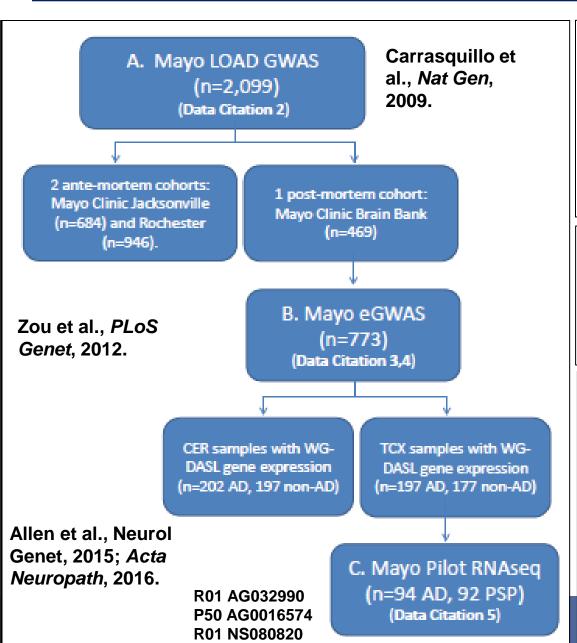
TReNa


Intron Retention

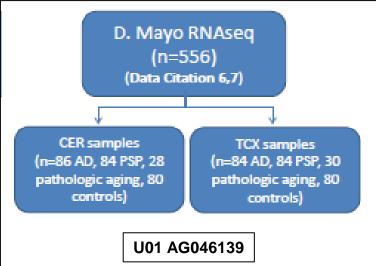
Omics Integration

eQTL

WGS



Human –Omics Data



SCIENTIFIC DATA

Data Descriptor: Human whole genome genotype and transcriptome data for Alzheimer's and other neurodegenerative diseases

Mariet Allen¹⁻, Minerva M. Carrasquillo¹⁻, Cory Funk², Benjamin D. Heavner², Fanggeng Zou², Curtis S. Younkin³, Jeremy D. Burgess³, High-Seng Chaf³, Julia Crook², James A. Eddy², Hongdong Li², Ben Logdon³, Mette A. Peters², Kristen K. Dang³, Xue Wang³, Daniel Serie³, Chen Wang³, Thuy Nguyen³, Sarah Lincoln³, Kimberly Malphrus³, Gina Bisceglio³, Ma Li³, Todd E. Golde⁶, Lara M. Mangravite⁵, Yan Asmann⁷, Nathan D. Price², Ronald C. Petersen⁷, Neill R. Graff-Radford⁸, Dennis W. Dickson², Steven G. Younkin³ & Nilöre Ertekin-Taner^{1,8}

- Gene expression on >1,300 brain samples (AD, PSP, controls).
- GWAS genotypes on >2,400.
- WGS on >300.

Nature Scientific Data

Data Deposition

	Directory	Study	Data Type	Tissue	Dx Group	N	Synpase ID	
	MCADGS	Mayo LOAD GWAS	Genotypes/Covariates		AD, Con, nAD	2099	syn3157238	٦
	MCADGS	MayoeGWAS	Array expression/Covariates	CBE	AD, nAD	374	syn3157225	
	MCADGS	MayoeGWAS	eQTL results (cis)	CBE	AD, nAD	374	syn3157249	
an	MCADGS	MayoeGWAS	Array expression/Covariates	TCX	AD, nAD	399	syn3157225	
Ē	MCADGS	MayoeGWAS	eQTL results (cis)	TCX	AD, nAD	399	syn3157249	-
귀	MCADGS	Mayo Pilot RNAseq	Gene/Transcript counts, Covariates	TCX	AD	96	syn3157268	
	MCADGS	Mayo Pilot RNAseq	Gene/Transcript counts, Covariates	TCX	PSP	96	syn3157268	
	Mayo RNAseq Study	Cerebellum	Gene/Transcript counts, Covariates	CBE	AD, PSP, PA, Con	276	syn5049298	
	Mayo RNAseq Study	Temporal Cortex	Gene/Transcript counts, Covariates	TCX	AD, PSP, PA, Con	275	syn3163039	
	Mayo RNAseq Study	Path Aging	Gene/Transcript counts, Covariates	TCX	PA	41	syn7344223	
Φ	Tau and APP ms	APPPS1	Gene/Transcript counts, Covariates	Forebrain	TG/NonTG	40 (various ages)	syn3435792	
ns	Tau and APP ms	TgCRND8	Gene/Transcript counts, Covariates	Forebrain	TG/NonTG	88 (various ages)	syn3435792	
<u></u>	Tau and APP ms	P301L tau (JNPL3)	Gene/Transcript counts, Covariates	Spinal Cord	TG/NonTG	24 (various ages)	syn3157183	
2	Tau and APP ms	rTg4510	Gene/Transcript counts, Covariates	Forebrain	TG/NonTG	36 (various ages)	syn3157183	

Data uploaded to AMP-AD Knowledge portal on Synapse by the Mayo/UF/ISB team.

MCADGS = Mayo Clinic Alzheimer's Disease Genetics Studies; PA = pathologic aging, Con = Pathology free control; nAD = non Alzheimer's pathology

Outcomes

- Conserved brain myelination networks are altered in AD and PSP
 (Allen et al., Alzheimer's and Dementia, 2017). Comparative -omics,
 mechanism, novel targets.
- An intronic variant at the *TREM* locus is associated with higher brain *TREM2* and *TREML1* levels and resides in a TF binding site (*Carrasquillo et al., Alzheimer's and Dementia, 2016*). Omics integration, directionality, mechanism.
- Many AD candidate risk genes have strong eQTL and/or differential expression in brain (Allen et al, Neurology Genetics 2015, 2017; Ridge et al., Genome Medicine, 2017; Mukherjee et al., Alzheimer's and Dementia, 2017).
- AD risk genes PLCG2, ABI3 and TREM2 have higher levels in AD brains, Aß models and reside in immune networks (Sims et al., Nature Genetics, 2017).
- Modulation of innate immunity proteins influences Aß and tau pathophysiology (Chakrabarty et al., Neuron, 2015; Li et al., FASEB, 2015).
- Differentially expressed genes/pathways in AD vs. other diagnoses are enriched for immune pathway genes.
- Immunity co-expression networks are enriched for AD risk genes.

Comparative Multi-omics and Convergent Neurodegenerative Disease Mechanisms:

Myelination

Identification of Altered Myelination Networks in AD and PSP: A Comparative Transcriptome Analysis

Alzheimer's

Dementia

Alzheimer's & Dementia (2017) 1-15

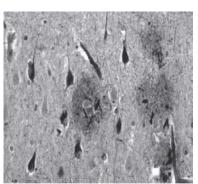
Featured Article

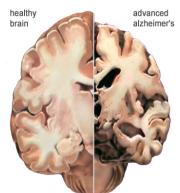
Conserved brain myelination networks are altered in Alzheimer's and other neurodegenerative diseases

Mariet Allen^{a,1}, Xue Wang^{b,1}, Jeremy D. Burgess^a, Jens Watzlawik^a, Daniel J. Serie^b,
Curtis S. Younkin^c, Thuy Nguyen^a, Kimberly G. Malphrus^a, Sarah Lincoln^a,
Minerva M. Carrasquillo^a, Charlotte Ho^a, Paramita Chakrabarty^d, Samantha Strickland^a,
Melissa E. Murray^a, Vivek Swarup^e, Daniel H. Geschwind^e, Nicholas T. Seyfried^{f,g},
Eric B. Dammer^f, James J. Lah^g, Allan I. Levey^g, Todd E. Golde^d, Cory Funk^h, Hongdong Li^h,
Nathan D. Price^h, Ronald C. Petersenⁱ, Neill R. Graff-Radford^j, Steven G. Younkin^a,
Dennis W. Dickson^a, Julia R. Crook^b, Yan W. Asmann^b, Nilüfer Ertekin-Taner^{a,j,*}

Comparative Transcriptome Analysis: Rationale

Comparative transcriptome analysis of distinct neurodegenerative diseases can uncover disease pathways that are *unique* or *common* to these diseases.

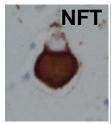

- AD ≠ PSP <u>AND</u> [(ΔAD vs. Con) ≠ (ΔPSP vs.Con)] →
 uniquely perturbed pathways
- [(ΔAD vs. Con) ~ (ΔPSP vs. Con)] →
 commonly perturbed pathways

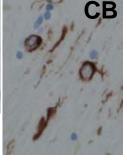


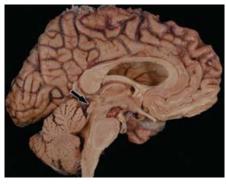
Diagnostic Groups

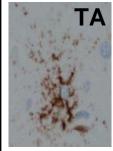
Diagnosis	Pathology				
Diagnosis	Amyloid beta	Tau			
AD	yes	yes			
PSP	no	yes			

Alzheimer's Disease (AD)








- Plaques (Aβ)+Tangles (tau).
- Dementia: Memory, language, others.
 - APP, PSEN1, PSEN2
 - APOE ε4
 - 20 GWAS loci genes
 - TREM2, PLD3

Progressive Supranuclear Palsy (PSP)

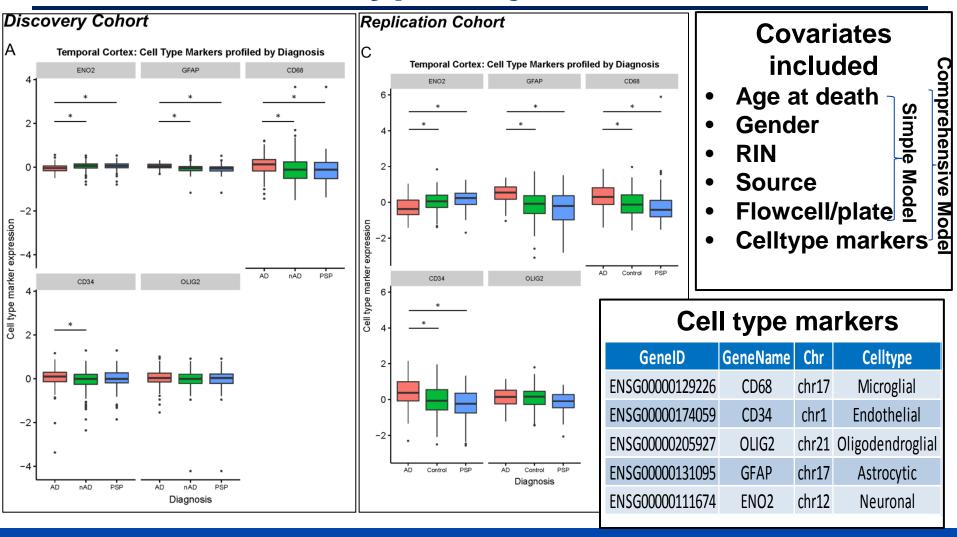
(Dickson et al, 2007)

- Tangles+ tau-positive glial lesions.
- Parkinsonian disorder: Falls, eye movement.
 - MAPT (H1 haplotype)
 - 6 other GWAS loci (MOBP etc.)

Comparative Transcriptome Analysis: Approach

Discovery and Replication Cohorts

	M	Mayo	Mayo Clinic RNAseq				
Transcriptome profiling	Temporal C	ortex (TCX)	Cerebell	um (CER)	Tempo	ral Cortex	(TCX)
Transcriptome proming	AD	PSP	AD	PSP	AD	PSP	Control
N	181	97	173	96	80	82	76
Females (%)	94 (52%)	40 (42%)	88 (51%)	37 (39%)	49 (61%)	33 (40%)	38 (50%)
Age: Mean (SD)	74 (5.6)	72 (5.3)	73 (5.7)	72 (5.0)	83 (8.6)	74 (6.5)	84 (9.3)
RIN: Mean (SD)	6.3 (0.8)	7.0 (1.0)	7.1 (1.0)	7.1 (1.0)	8.6 (0.6)	8.5 (0.5)	7.6 (1.0)


<u>Transcriptome Profiling</u>: Multi-variable linear regression analysis in R controlled for covariates (age, sex, RIN, APOE, plate for discovery; age, sex, RIN, tissue source, flowcell for replication cohort analyses).

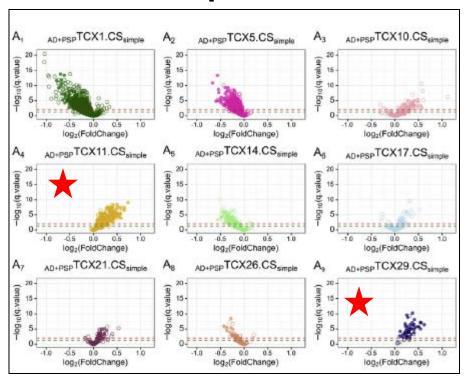
<u>Network Analysis</u>: Weighted Gene Co-expression Network Analysis (Langfelder&Horvath BMC Bioinform, 2008). Gene expression residuals after accounting for covariates.

Goal: Discover common and distinct dysregulated expression networks and key molecules that underlie disease pathways in AD and PSP.

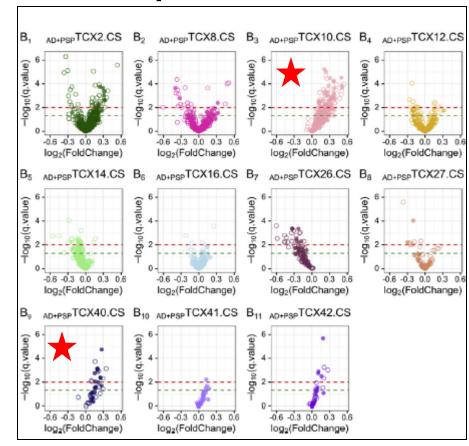
Comparative Transcriptome Analysis: Cell Type Adjustment

Myelination Networks Are Up In AD vs. PSP Temporal Cortex (TCX) – Discovery Cohort

Table 1
Temporal cortex coexpression networks in the discovery cohort with significant cell type enrichment


			Cell type enrichme	ent		Disease	association	Top GO biolog	gical process	
Model	Module name	Module size	Cell type	OR	P Value	Beta	P Value	ID	Name	Enrichment P value
Simple	AD+PSPTCX17.CS _{simple}	213	Astrocyte	54.4	5.83×10^{-80}	0.06	3.34×10^{-1}	GO:0007399	Nervous system development	3.25×10^{-6}
	AD+PSPTCX10.CS _{simple}	404	Microglia	55.6	7.34×10^{-158}	0.11	7.66×10^{-2}	GO:0006955	Immune response	1.98×10^{-53}
	AD+PSPTCX21.CS _{simple}	153	Microglia	4.3	8.74×10^{-3}	0.12	5.09×10^{-2}	NA	NA	NA
	AD+PSPTCX1.CS _{simple}	2046	Neuron	9.8	1.00×10^{-100}	-0.21	5.50×10^{-4}	GO:0007268	Synaptic transmission	2.15×10^{-60}
	AD+PSPTCX14.CS _{simple}	314	Neuron	9.5	9.06×10^{-27}	-0.16	8.50×10^{-3}	GO:0007268	Synaptic transmission	2.93×10^{-12}
	AD+PSPTCX5.CS _{simple}	654	Neuron	4.9	1.06×10^{-19}	-0.29	1.04×10^{-6}	NA	NA	NA
	AD+PSPTCX26.CS _{simple}	102	Neuron	7.4	2.56×10^{-6}	-0.14	1.96×10^{-2}	GO:0098655	Cation transmembrane transport	3.55×10^{-2}
	AD+PSPTCX11.CS _{simple}	340	Oligodendrocyte	96.4	2.78×10^{-81}	0.27	5.58×10^{-6}	GO:0042552	Myelination	1.03×10^{-7}
	AD+PSPTCX29.CS _{simple}	58	Oligodendrocyte	47.1	2.01×10^{-13}	0.32	4.43×10^{-8}	NA	NA	NA
Comprehensive	AD+PSPTCX14.CS	264	Astrocyte	31.5	1.86×10^{-39}	-0.11	6.41×10^{-2}	GO:0007399	Nervous system development	6.32×10^{-7}
	AD+PSPTCX26.CS	120	Microglia	153.6	9.19×10^{-106}	-0.17	4.56×10^{-3}	GO:0006955	Immune response	2.72×10^{-34}
	AD+PSPTCX42.CS	41	Neuron	8.9	2.58×10^{-3}	0.12	4.38×10^{-2}	NA	NA	NA
	AD+PSPTCX27.CS	111	Neuron	10.3	8.18×10^{-12}	-0.01	8.31×10^{-1}	GO:0007268	Synaptic transmission	1.33×10^{-2}
	AD+PSPTCX16.CS	219	Neuron	6.7	7.15×10^{-13}	0.01	9.12×10^{-1}	NA	NA	NA
	AD+PSPTCX12.CS	305	Neuron	6.6	7.31×10^{-16}	0.02	7.32×10^{-1}	GO:0007268	Synaptic transmission	1.57×10^{-13}
	AD+PSPTCX8.CS	377	Neuron	7.1	5.76×10^{-22}	0.03	6.26×10^{-1}	GO:0007268	Synaptic transmission	1.51×10^{-17}
	AD+PSPTCX2.CS	752	Neuron	14.1	4.96×10^{-93}	0.08	1.97×10^{-1}	GO:0007268	Synaptic transmission	4.44×10^{-20}
	AD+PSPTCX41.CS	41	Oligodendrocyte	40.6	3.98×10^{-8}	0.06	3.02×10^{-1}	NA	NA	NA
	AD+PSPTCX40.CS	44	Oligodendrocyte	20.1	2.29×10^{-3}	0.20	8.00×10^{-4}	NA	NA	NA
	AD+PSPTCX10.CS	308	Oligodendrocyte	81.6	1.70×10^{-72}	0.19	1.43×10^{-3}	GO:0042552	Myelination	2.37×10^{-9}

- TCX co-expression networks enriched for oligodendrocyte transcripts and myelination related biological processes are higher in AD vs. PSP.
- This association persists even when adjusting for five CNS cell-specific transcripts (surrogate for cell type composition).



Myelination Networks Are Up In AD vs. PSP Temporal Cortex (TCX) – Discovery Cohort

Simple Model

Comprehensive Model

Myelination Networks Are Up In AD vs. PSP Down in PSP vs. Control Down in AD vs. Control Temporal Cortex (TCX) – Replication Cohort

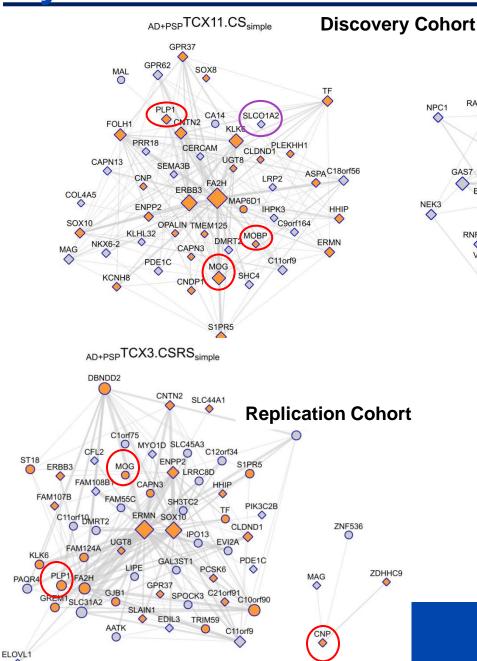
Table 3

Temporal cortex coexpression networks in replication cohort with significant oligodendrocyte-specific gene enrichment

Model	Diagnostic comparison	Module name	Module size	Number of oligodendrocyte genes in module	Oligodendrocyte enrichment OR	Oligodendrocyte enrichment P value	Disease association beta	Disease association P value
Simple	AD + Con	AD+ConTCX10.CSRS _{kimple}	398	15	5.95	2.45×10^{-7}	-0.094	9.19×10^{-1}
		AD+ConTCX4.CSRSsimple	924	73	40.48	2.44×10^{-63}	-0.008	2.44×10^{-1}
	AD + PSP	AD+PSPTCX3.CSRS _{simple}	1542	93	125.11	6.12×10^{-80}	0.279	3.31×10^{-4}
	PSP + Con	PSP+ConTCX5.CSRS _{simple}	737	73	52.71	9.60×10^{-69}	-0.221	5.19×10^{-3}
		PSP+ConTCX12.CSRS _{simple}	253	15	9.68	5.35×10^{-8}	-0.176	2.74×10^{-2}

- TCX myelination network expression is replicably higher in AD vs. PSP.
- This appears to be due to greater reduction in myelination network gene levels in 'PSP vs. Control' than 'AD vs. Control'.

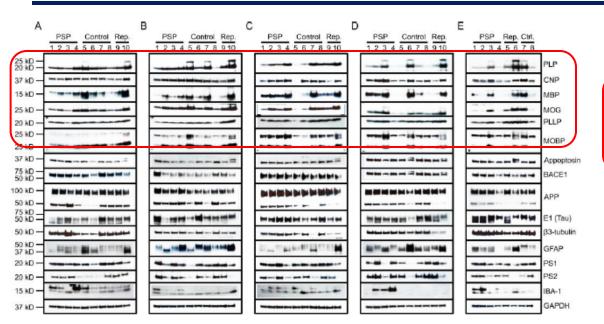
Myelination Networks Are Up In AD vs. PSP Down in PSP vs. Control Down in AD vs. Control Temporal Cortex (TCX) – Replication Cohort


Table 3
Temporal cortex coexpression networks in replication cohort with significant oligodendrocyte-specific gene enrichment

Model	Diagnostic comparison	Module name	Module size	Number of oligodendrocyte genes in module	Oligodendrocyte enrichment OR	Oligodendrocyte enrichment P value	Disease association beta	Disease association P value
Simple	AD + Con	AD+ConTCX10.CSRS _{kimple}	398	15	5.95	2.45×10^{-7}	-0.094	9.19×10^{-1}
		AD+ConTCX4.CSRS _{simple}	924	73	40.48	2.44×10^{-63}	-0.008	2.44×10^{-1}
	AD + PSP	AD+PSPTCX3.CSRS _{simple}	1542	93	125.11	6.12×10^{-80}	0.279	3.31×10^{-4}
	PSP + Con	PSP+ConTCX5.CSRS _{simple}	737	73	52.71	9.60×10^{-69}	-0.221	5.19×10^{-3}
		PSP+ConTCX12.CSRS _{simple}	253	15	9.68	5.35×10^{-8}	-0.176	2.74×10^{-2}
Comprehensive	AD + Con	AD+ConTCX7.CSRS	526	17	5.15	4.49×10^{-5}	-0.228	4.12×10^{-3}
-		AD+ConTCX24.CSRS	65	15	46.61	9.42×10^{-17}	-0.143	7.40×10^{-2}
		AD+ConTCX26.CSRS	52	5	14.81	6.03×10^{-3}	-0.025	7.54×10^{-1}
		AD+ConTCX2.CSRS	886	56	19.35	5.81×10^{-38}	-0.042	6.05×10^{-1}
	AD + PSP	AD+PSPTCX2.CSRS	946	49	13.44	4.62×10^{-28}	0.009	9.07×10^{-1}
		AD+PSPTCX8.CSRS	628	25	7.02	5.42×10^{-10}	0.003	9.66×10^{-1}
		AD+PSPTCX26.CSRS	69	15	43.23	2.84×10^{-16}	-0.050	5.29×10^{-1}
	PSP + Con	PSP+ConTCX2.CSRS	1291	74	29.01	5.46×10^{-52}	-0.100	2.12×10^{-1}
		PSP+ConTCX22.CSRS	112	14	21.9	1.35×10^{-11}	-0.064	4.26×10^{-1}

• In comprehensive model for Replication Cohort, trends remain the same but significance reduced for some comparisons (over-correction?).

Myelination Networks Harbor AD and PSP Risk



Myelination genes: MOG, PLP1, PLLP, CNP, MOBP

PSP risk genes: SLCO1A2, MOBP

AD risk/related genes: BACE1, PSEN1, BIN1, CR1

Myelination Network Perturbations Are Validated at Protein Level

		PSP vs. (Contral			
		Mean	± SD			
Protein	Gene	PSP	Controls	6.050	p value	
PLP	PLP1	0.758 ± 0.355	0.94 ± 0.539	-0.338	0.056	
CNP	CNP	0.902 ± 0.27	0.852 ± 0.338	-0.027	0.803	
MBP	MBP	1.519 ± 1.213	1.852 ± 1.936	-0.772	0.221	
MOG	MOG	1.056 ± 0.735	1.219 ± 0.794	-0.421	0.114	
PLLP	PLLP	0.604 ± 0.166	0.649 ± 0.213	-0.108	0.147	
MOBP183	MOBP	1.217 ± 0.487	1.178 ± 0.653	-0.01	0.963	
MOBP81	MOBP	0.856 ± 0.43	0.868 ± 0.496	-0.119	0.514	
Appoptosin	SLC25A38	0.54 ± 0.216	0.418 ± 0.177	0.157	0.053	
BACE1	BACE1	1.534 ± 0.655	1.441 ± 0.462	0.098	0.65	
APP	APP	1.557 ± 0.42	1.285 ± 0.199	0.323	0.018	
E1 (Tau)	MAPT	2.108 ± 0.632	1.874 ± 0.527	0.266	0.239	
β3-tubulin	TUBB3	1.383 ± 0.543	1.275 ± 0.621	0.115	0.516	
GFAP	GFAP	1.075 ± 0.524	1.331 ± 0.911	-0.565	0.048	
PS1	PSEN1	1.048 ± 0.328	0.938 ± 0.316	0.281	0.02	
PS2	PSEN2	0.847 ± 0.341	0.835 ± 0.487	0.272	0.068	
IBA-1	AIF1	1.624 ± 2.551	0.463 ± 0.318	1.076	0.136	

Proteome Data of Mayo TCX Samples from Emory/UCLA (84 AD vs. 83 PSP)

Gene Name UniProt ID	Gene Symbol	log2FC.PSPvsAD	p.PSPvsAD	FDR.PSPvsAD
MBP P02686	MBP	-0.283166459	0.004054992	0.013873479
MBP H7BYR8	MBP	-0.44204852	0.006880439	0.021600988
CNP P09543	CNP	-0.230290189	0.008508914	0.025767751
MOG C9JTE0	MOG	-0.169774747	0.080079509	0.159454749
PLP1 P60201	PLP1	-0.138230067	0.19583294	0.324337773
BIN1 O00499	BIN1	-0.005061693	0.881080053	0.931413656

Rigor and "External" Reproducibility

Alzheimer's & Dementia ■ (2017) 1-15

Alzheimer's

Bementia

Multiscale network modeling of oligodendrocytes reveals molecular components of myelin dysregulation in Alzheimer's disease

RESEARCH ARTICLE

ARTICLE

biotechnology

Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain

Featured Article

Conserved brain myelination networks are altered in Alzheimer's and other neurodegenerative diseases

(Allen, Ertekin-Taner et al.)

(McKenzie, Zhang et al.)

376 AD, 173 non-AD CER, DLPFC, VC

(Lake, Zhang et al.)

6 brains CER, FC, VC

261 AD, 179 PSP, 76 Control (2 cohorts) TCX

GPR37

MAL

GPR62

SOX8

FOLH1

PRR18

CERCAM

CLDND1

CAPN13

SEMA3B

CNP

ERBB3

FAZH

LRP2

ASPA C18orf56

LRP2

ASPA C18orf56

LRP2

ASPA C18orf56

COL4A5

SOX10

KLHL32

MAP6D1

HHIP

COPALIN TMEM125

CAPN3

MAP6D1

HHIP

CONDP

MOG SHC4

CT1orf9

CT1orf9

CT1orf9

Clustering annotation: OPC Oligodendrocyte
Trajectory annotation: OPC IOII
Normalized gene expression magnitude:
Low High

Mayo Discovery Cohort

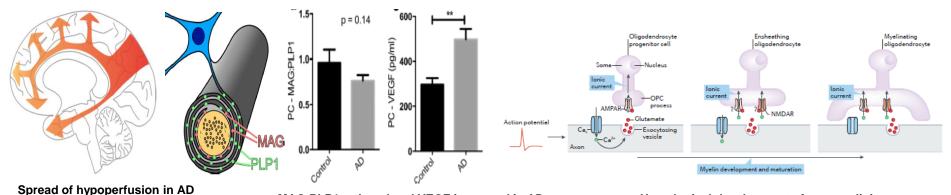
Mount Sinai

UCSD

Replication of Network Structure:

Myelination genes: PLP1, PLLP, CNP, MOBP

AD risk/related genes: BACE1, PSEN1, BIN1, UNC5C o myelin, o key driver, o AD risk genes (replicable)

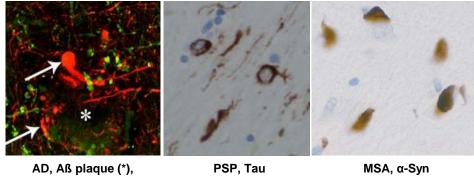

Replication of Myelination genes: Myelination genes: *PLP1*, *MOG*, *MBP* **AD** risk/related genes: *MEF2C*

o myelin

Potential Mechanisms of Myelin Dysregulation

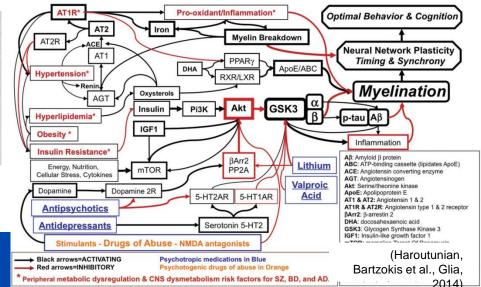
Hypoperfusion:

Disrupted axo-myelin transmission:



MAG:PLP1 reduced and VEGF increased in AD (Love&Miners, Acta Neuropath, 2016)

Hypothetical development of axo-myelinic synapse (Micu et al., Nat Rev NSci, 2018)


Protesostasis (Tau, Aß, α-Syn):

Neurotransmitters, inflammation:

(Dickson et al., 2006)

(Croisier&Graber, 2006)

demvelinated axon (arrow)

(Mitew et al., 2010)

©2016 MFMER | slide-2

Novel Target Discovery: Myelin

Therapeutic Hypothesis: Promoting Myelination and Oligodendrocyte Health

We and others have recently implicated oligodendrocyte and myelin dysfunction as an early event in AD (and PSP), perhaps even preceding evidence for overt neuronal dysfunction. If this is the case, promoting oligodendrocyte health and myelination may be a key target for intervention in AD (and other neurodegenerative diseases).

Mayo-UF-IS Class M Oligoden	lyelin-	ADvsControl_Simple_TCX		ADvs	ADvsCon_Simple_CER		AD vs Control_Comprehensiv e_TCX		AD vsCon orehensive_CER
gene symbol	Predicted therapeutic direction	Modules	GO_Module	Modules	GO_Module	Modules	GO_Module	Modules	GO_Module
MOG	agonism	MM5	axon ensheathment	MM20	axon ensheathment	MM8	NA	MM11	axon ensheathment
MOBP	agonism	MM10	NA	MM48	NA	MM33	NA	MM11	axon ensheathment
SLCO1A2	unknown	MM10	NA	MM48	NA	MM8	NA	MM1	NA
UNC5C	agonism	MM5	axon ensheathment	MM22	cell-cell signaling	MM2	NA	MM24	cell-cell signaling
PLP1	agonism	MM5	axon ensheathment	MM20	axon ensheathment	MM2	NA	MM11	axon ensheathment
PLLP	agonism	MM10	NA	MM48	NA	MM8	NA	MM11	axon ensheathment
BIN1	unknown	MM5	axon ensheathment	MM1	chromosome organization	MM2	NA	MM8	NA
Mayo-UF-IS	B Targets:					Al	D vs		AD vs

Mayo-UF-IS Class M Oligoder	lyelin-	DEG Com	parison Summary	AD vs Con	trol_Simple_TCX_DEG	Control_Si	D vs mple_CER_D EG		AD vs Comprehensive_ CCX_DEG	Control_	O vs Comprehe CER_DEG
gene symbol	Predicted therapeutic direction	Consisten cy of TCX and CER	Consistency of Simple vs. Comprehensive Models	FDR	Direction	FDR	Direction	FDR	Direction	FDR	Direction
MOG	agonism	No	No	8.68E-01	HighlnAD	5.95E-01	LowInAD	8.16E-01	LowInAD	7.33E-01	LowInAD
MOBP	agonism	Yes	Yes	1.21E-01	LowInAD	1.50E-02	LowInAD	7.77E-02	LowInAD	3.17E-02	LowInAD
SLCO1A2	unknown	Yes	Yes	7.52E-01	LowInAD	9.11E-01	LowInAD	1.80E-01	LowInAD	9.67E-01	LowInAD
UNC5C	agonism	No	Yes	6.95E-01	HighlnAD	1.41E-01	LowInAD	7.78E-01	HighInAD	5.53E-01	LowInAD
PLP1	agonism	No	Yes	3.25E-01	HighlnAD	9.28E-01	LowInAD	8.17E-01	HighInAD	8.68E-01	HighlnAD
PLLP	agonism	Yes	Yes	7.35E-01	LowInAD	6.29E-02	LowInAD	5.76E-01	LowInAD	9.43E-02	LowInAD
BIN1	unknown	Yes	Yes	8.25E-01	HighlnAD	3.58E-01	HighlnAD	9.12E-01	HighlnAD	9.30E-01	LowInAD

Conclusions and Implications

- Myelination networks are down in both AD and PSP, but more so in PSP.
 - Convergent pathway for multiple neurodegenerative diseases.
 - Tau-related (especially 4R), disrupted neuron-glia interaction, other?
 - Role of aging and high metabolic demand of maintaining myelin.
- Myelination networks are reproducible, validated and their alterations are unlikely to be due to cell population changes.
 - TCX is a relatively unaffected region in PSP.
 - Similar findings even after adjusting for cell populations.
 - Internal, external replications, including single cell type data.
- Myelination networks harbor AD and PSP risk genes.
 - Mechanistic implications for these genes and their variants.
- Implications for (Combination) Therapy.
 - Myelin repair/remyelination.
 - Maintenance of microglial, astrocyte function (myelin debris removal)
 - APOE/lipid metabolism/cerebrovascular health

Comparative Multi-omics and Divergent Neurodegenerative Disease Mechanisms:

Innate Immunity

nature genetics

Rare coding variants in *PLCG2*, *ABI3*, and *TREM2* implicate microglial-mediated innate immunity in Alzheimer's disease

We identified rare coding variants associated with Alzheimer's disease in a three-stage case-control study of 85,133 subjects. In stage 1, we genotyped 34,174 samples using a wholeexome microarray. In stage 2, we tested associated variants $(P < 1 \times 10^{-4})$ in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, we used an additional 14,997 samples to test the most significant stage 2 associations ($P < 5 \times 10^{-8}$) using imputed genotypes. We observed three new genome-wide significant nonsynonymous variants associated with Alzheimer's disease: a protective variant in *PLCG2* (rs72824905: p.Pro522Arg, $P = 5.38 \times 10^{-10}$, odds ratio (OR) = 0.68, minor allele frequency (MAF)_{cases} = 0.0059, MAF_{controls} = 0.0093), a risk variant in *ABI3* (rs616338: p.Ser209Phe, $P = 4.56 \times 10^{-10}$, OR = 1.43, MAF_{cases} = 0.011, MAF_{controls} = 0.008), and a new genome-wide significant variant in *TREM2* (rs143332484: p.Arg62His, $P = 1.55 \times 10^{-14}$, OR = 1.67, $MAF_{cases} = 0.0143$, $MAF_{controls} = 0.0089$), a known susceptibility gene for Alzheimer's disease. These proteinaltering changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified risk genes in Alzheimer's disease. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to the development of Alzheimer's disease.

controls using the Illumina HumanExome microarray. Data from multiple consortia were combined in a single-variant meta-analysis (Online Methods) assuming an additive model. In total, 241,551 variants passed quality control (Supplementary Table 3). Of these, 203,902 were polymorphic, 26,947 were common (MAF \geq 5%), and 176,955 were low frequency or rare (MAF < 5%). We analyzed common variants using a logistic regression model in each sample cohort and combined data using METAL³⁰. Rare and low-frequency variants were analyzed using the score test and data were combined with SeqMeta³¹ (Supplementary Fig. 2).

We reviewed cluster plots for variants showing association ($P < 1 \times 10^{-4}$) and identified 43 candidate variants (Supplementary Table 4), excluding known risk loci (Supplementary Table 5). In stage 2, we tested these for association in 14,041 LOAD cases and 21,921 controls, using genotypes derived from *de novo* genotyping and imputation (Online Methods). We carried forward single-nucleotide variants (SNVs) with genome-wide significant associations and consistent directions of effect to stage 3 where genotypes for 6,652 independent cases and 8,345 controls were imputed using the Haplotype Reference Consortium resource ^{32,33} (Online Methods and Supplementary Table 6).

We identified four rare coding variants with genome-wide significant association signals with LOAD ($P < 5 \times 10^{-8}$) (Table 2 and Supplementary Tables 7 and 8). The first is a missense variant p.Pro522Arg (P = 5.38

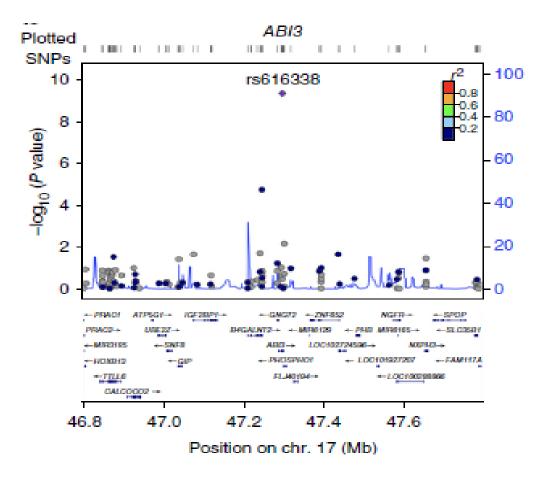
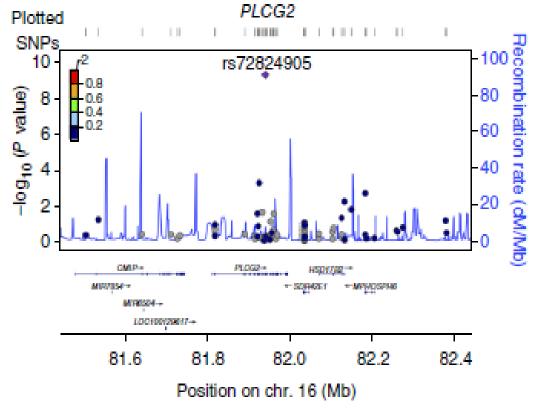


Table 2 Summary of stages 1, 2 and 3 and combined meta-analysis results for SNVs at $P < 5 \times 10^{-8}$

Table 2 Sullillary of stages 1	, Z and S and Combine	u illeta-alialysis lesuits for Sivvs	sat / < 3 × 10	
SNV	rs75932628	rs143332484	rs72824905	rs616338
Chr.	6	6	16	17
Position (bp)	41,129,252	41,129,207	81,942,028	47,297,297
Protein variation	Arg47His	Arg62His	Pro522Arg	Ser209Phe
Gene	TREM2	TREM2	PLCG2	ABI3
Effect allele	T	Т	G	T
Stage 1				
P	3.02×10^{-12}	3.48×10^{-9}	1.19×10^{-5}	2.16 × 10 ⁻⁵
OR	2.46	1.58	0.65	1.42
MAF _{cases}	0.003	0.015	0.006	0.013
MAF _{controls}	0.001	0.010	0.011	0.010
N	30,018	33,786	33,786	33,786
Stage 2				
P	4.38×10^{-8}	3.66×10^{-7}	1.35×10^{-4}	8.37 × 10 ⁻⁵
OR	2.37	3.97	0.70	1.41
MAF _{cases}	0.004	0.014	0.006	0.010
MAF _{controls}	0.002	0.006	0.008	0.008
N	35,831	3,968	35,831	35,831
Stage 3				
P	1.23×10^{-6}	2.45×10^{-3}	2.48×10^{-2}	1.75×10^{-2}
OR	2.58	1.55	0.69	1.58
MAF _{cases}	0.006	0.012	0.006	0.010
MAF _{controls}	0.003	0.008	0.007	0.008
N	14,884	15,288	15,288	14,876
Stage 1–3 meta-analysis				
P	5.38×10^{-24}	1.55×10^{-14}	5.38×10^{-10}	4.56×10^{-10}
OR	2.46	1.67	0.68	1.43
MAF _{cases}	0.004	0.014	0.006	0.011
MAF _{controls}	0.002	0.009	0.009	0.008
N	80,733	53,042	84,905	84,493

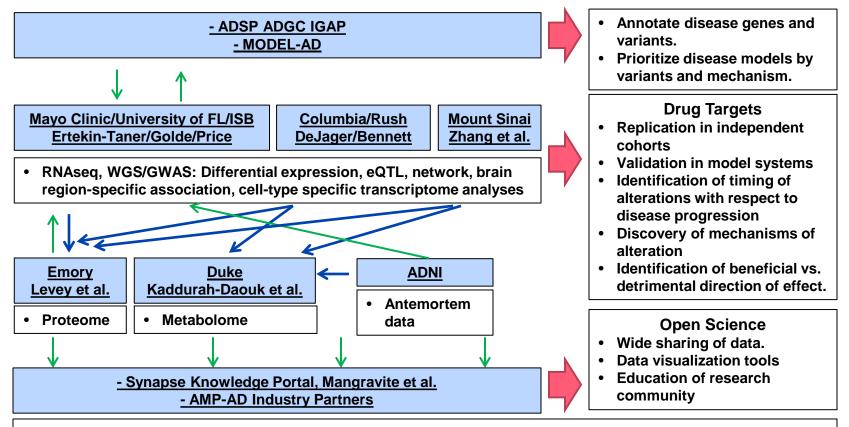
Abelson Interactor Protein 3 (*ABI3*) Ser209Phe, rs616338



Odds Ratio (OR)	1.43
P value	4.56x10 ⁻¹⁰
Minor Allele Frequency Cases	0.011
Minor Allele Frequency Controls	0.008

Phospholipase C γ2 (*PLCG2*) Pro522Arg, rs72824905

Odds Ratio (OR)	0.68
P value	5.38x10 ⁻¹⁰
Minor Allele Frequency Cases	0.0059
Minor Allele Frequency Controls	0.0093



Conclusions and Implications

- Innate immunity/microglial networks are up only in AD, but not in PSP.
 - Divergent pathway between AD vs. PSP (primary tauopathy).
 - AD (Aβ) specificity?
- Innate immunity networks are reproducible and validated though their changes are likely due to microgliosis in AD pathology-affected regions.
 - Observed only in AD vs. control, in TCX and simple model.
 - Findings disappear after adjusting for cell populations.
- Innate immunity networks harbor AD risk genes.
 - Mechanistic implications for these genes and their variants.
- Implications for Therapy.
 - Innate immunity may be a viable AD-specific target.
 - Opposite direction of risk associations between AD and PSP for some innate immunity AD risk genes may be multifactorial and should raise caution about targeting innate immunity in non-AD degenerative diseases.

AMP-AD Interactive Collaborations

- Simplified schematic depiction of the ongoing and planned collaborations with AMP-AD and other partners.
- Blue arrows: Shared samples. Green arrows: Shared data. Red arrows: Expected outcomes.
- Data generated by the teams are shown in white boxes below the relevant teams.
- This figure highlights the specific data types shared with and by our team and is not a full inventory of all data by all groups. Our team also widely shares rAAV tools and mouse brain data with all teams (not shown).

