Evaluating the Translational Validity of Mouse Models of Late-Onset AD (LOAD) through Deep-Phenotyping

Grant MacGregor PhD (Head)

UCI MODEL-AD Disease Modeling Project (DMP)

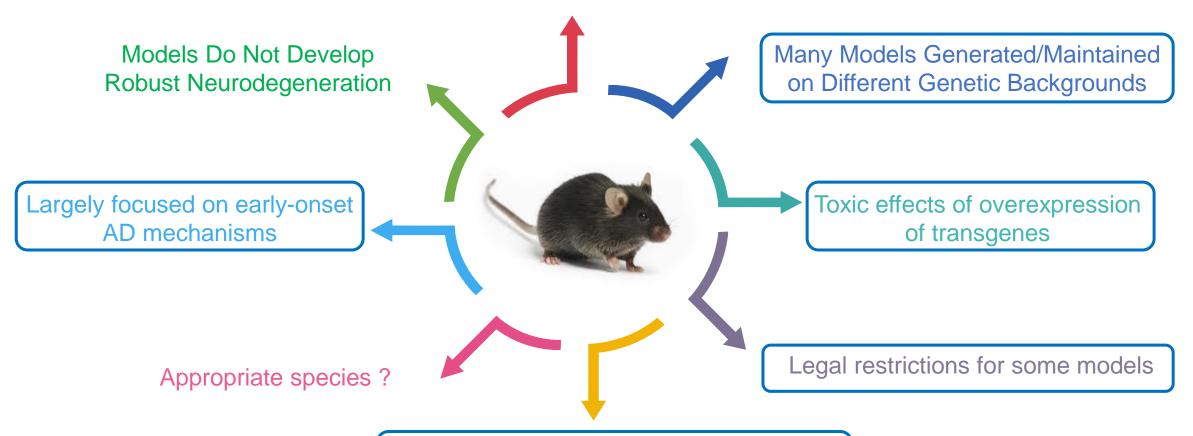
Gareth Howell PhD (Head)

IU/JAX MODEL-AD Disease Modeling Project (DMP)

Evaluating the Translational Validity of Mouse Models of Late-Onset AD (LOAD) through Deep-Phenotyping

MODEL-AD Consortium - Disease Modeling Project (DMP)

- General strategy for model development and phenotyping platforms.
- Examples of hAβ-KI (completed) and hTau-KI (in progress).
- Phenotyping of APOE4, Trem2^{R47H} models.
- Effect of mouse genetic background on development of pathology.



Concerns with Existing Animal Models of AD

Difficulties in Relating Behavioral Deficits
Observed in Mouse Models to Human AD

Reproducibility of findings in models and relation to human-relevant biomarkers

Using genome engineering to generate mouse models of Late-Onset Alzheimer's Disease (LOAD)

- Use CRISPR/Cas9 to introduce coding and conserved non-coding LOAD GWAS risk-variants into cognate loci in mouse genome – e.g. Trem2^{R47H}
- Overcomes limitations associated with -
 - Random integration of transgenes.
 - Supra-physiologic expression.
 - Lack of availability of matched negative controls.
- Accelerated production compared with previous HR / ES-cell based strategies.
- Improve reproducibility and reduce experimental variability by using consistent genetic background (C57BL/6J, initially).

Using advanced genome engineering to generate mouse models of Late-Onset Alzheimer's Disease (LOAD) – UCI DMP

- Use CRISPR/Cas9 with long (~ 2kb) ssDNA homology dependent repair (HDR) templates to introduce non-conserved LOAD GWAS risk-variants into cognate loci in mouse genome e.g. humanizing non-conserved regions of mouse clusterin locus (Clu).
- Use of Recombinase Mediated Cassette Exchange (RMCE) to humanize entire loci – e.g. hTau-KI, hClu-KI.
- Generate LOAD mouse models on consistent genetic background (C57BL/6J, initially).
- Maximize researcher access to all models available to both academics and pharma from Jackson Lab AD Mouse Model Resource, with minimal restrictions.

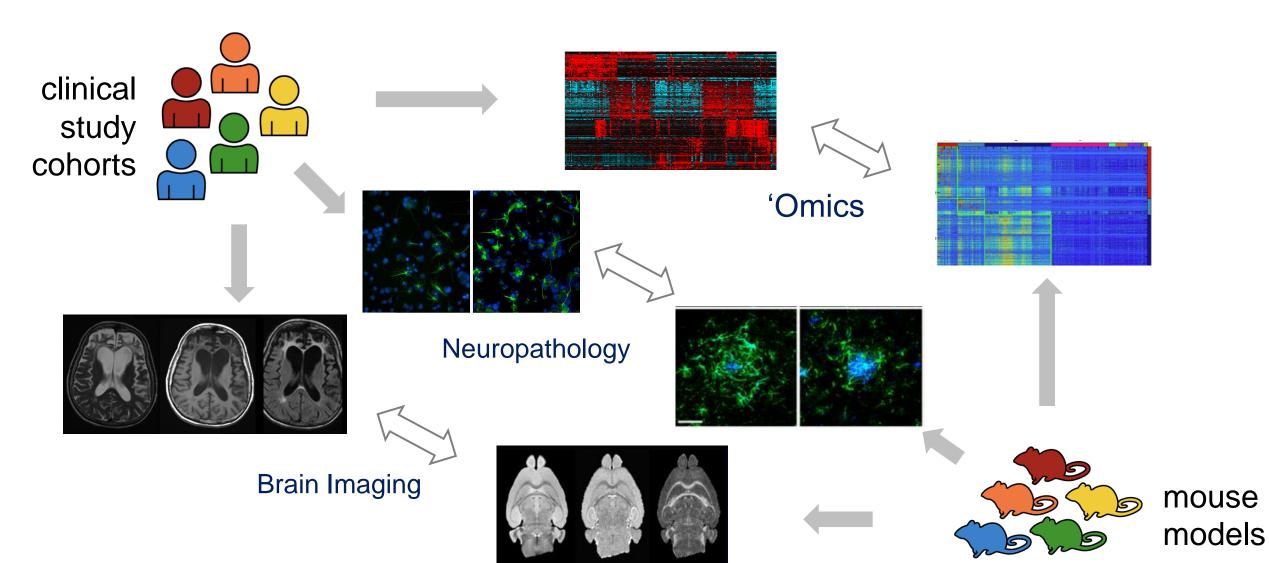
A humanized platform for introduction of GWAS AD-risk variants to generate mouse models of LOAD

B6J. hAβ-KI; APO $E^{\varepsilon 4/\varepsilon 4}$; hTau-KI base platform

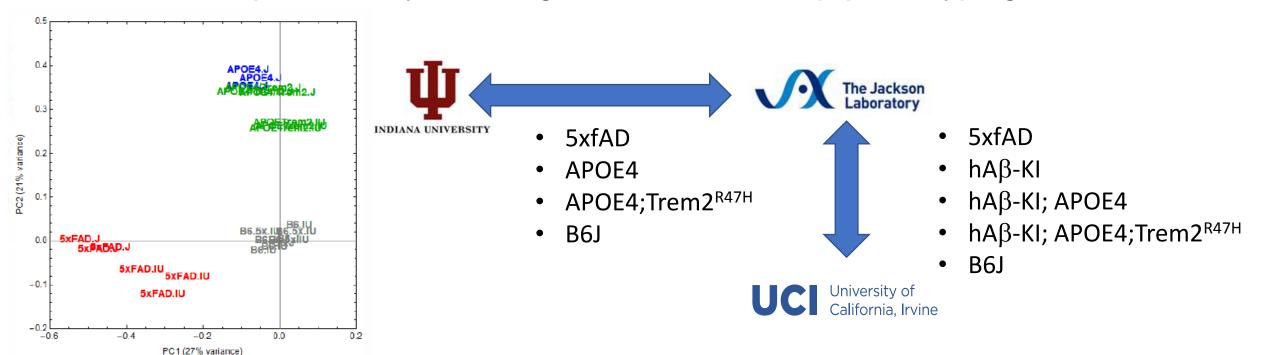
Available now In development

Long-term goal

- Introduce different combinations of GWAS
 human LOAD risk alleles into hAβ-KI; APOE^{ε4};
 hTau-KI via CRISPR/Cas9 or assisted
 reproduction.
- Perform initial screen, then deep-phenotyping on subset to analyze effects.
 - *Trem2* R47H
 - Abca7 A1527G
 - *Plcg2* M28L
 - Mthfr ^{A222V}



Goal - alignment of mouse models with clinical measures



Assessing reproducibility of findings at different sites

- Phenotype = Genes + Environment
- Harmonize environment and methodology to extent possible at each site.
- Assess reproducibility of data generated from deep-phenotyping.

e.g. IU v JAX mice nanoString Analysis

Deep phenotyping pipeline for LOAD models – UCI DMP

Pathology

Aβ/plaque load: Thio-S, 6E10

Tau/NFT load: HT7, AT8, Gallyas

Glial densities/activation:
Microglia (Iba1, CD68)
Astrocytes (Gfap, S100b)

Neurodegeneration: Brain Volume,
Neuronal Loss

Vascular Damage: CD31/fibrin

Biochemistry

Soluble and insoluble brain fractions (Aβ38, Aβ40, Aβ42) - MSD

Tau, phospho-Tau

Soluble brain fractions (Inflammatory cytokines) -MSD

Plasma Biomarkers

Colon / Fecal Sampling for Microbiome*

Functional Phenotyping

Behavior / Cognition

Long Term Potentiation (LTP)

Network Analysis

Gene expression via RNA-seq

_

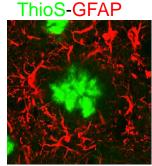
4, 8, 12, 18 month timepoints 18M / 18F available per timepoint * proposed

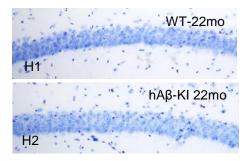
Model Characterization at UCI – 4,8,12,18 month timepoints

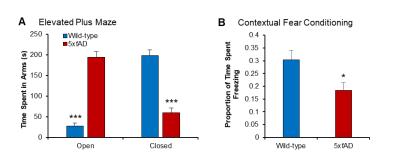
Neuropathology and Neurodegeneration

P<0.05,FDR<0.3

15501 Apoe

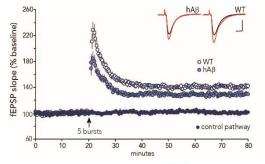

Cx3cr1 Spi1
Apor Trem2

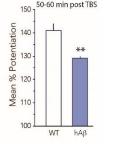

Log2(Fold Change)

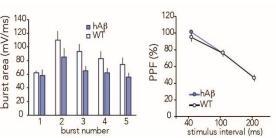

hAβ-KI 22mon_vs_WT 22mon

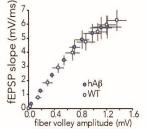
Network analysis: Molecular Profiling (RNA-Seq)

ThioS-iba1

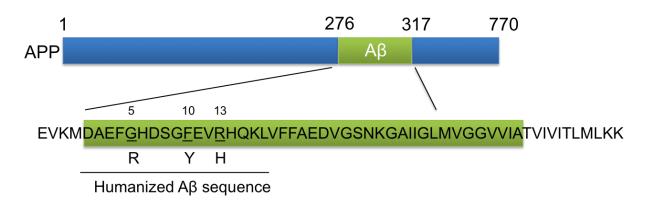


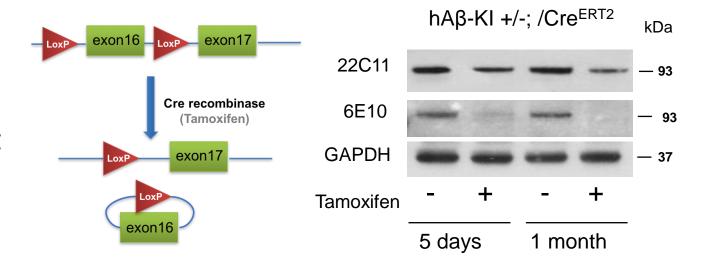





Behavioral and Cognitive Phenotyping

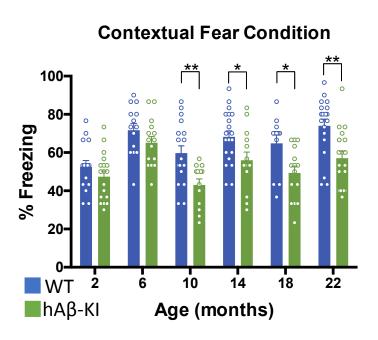
Electrophysiology

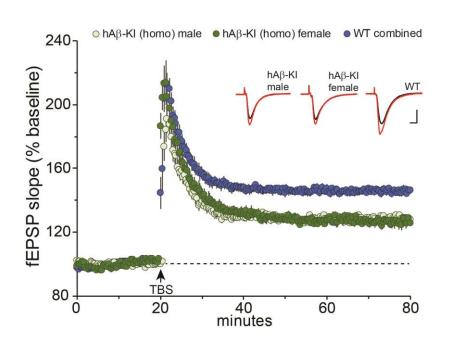


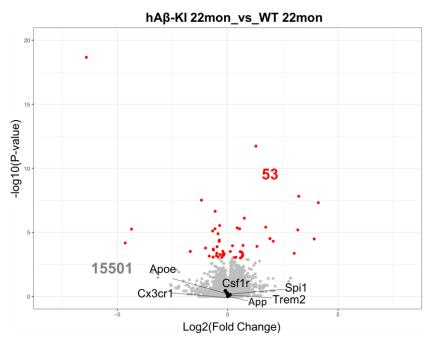


Generation of mice expressing a *cre-loxP* conditional allele of humanized wild-type $A\beta \square hA\beta$ -loxP-KI model – UCI DMP

- No published allele of mouse App expresses normal human Aβ.
- Exon 16 humanized Aβ sequence is floxed, enabling cre-mediated cKO of humanized allele.
- IU/JAX has generated mice with complementary hAβ-KI allele without loxP sites.
- Important models to investigate inherent difference in Aβ biology, plus provide platform for LOAD modeling.



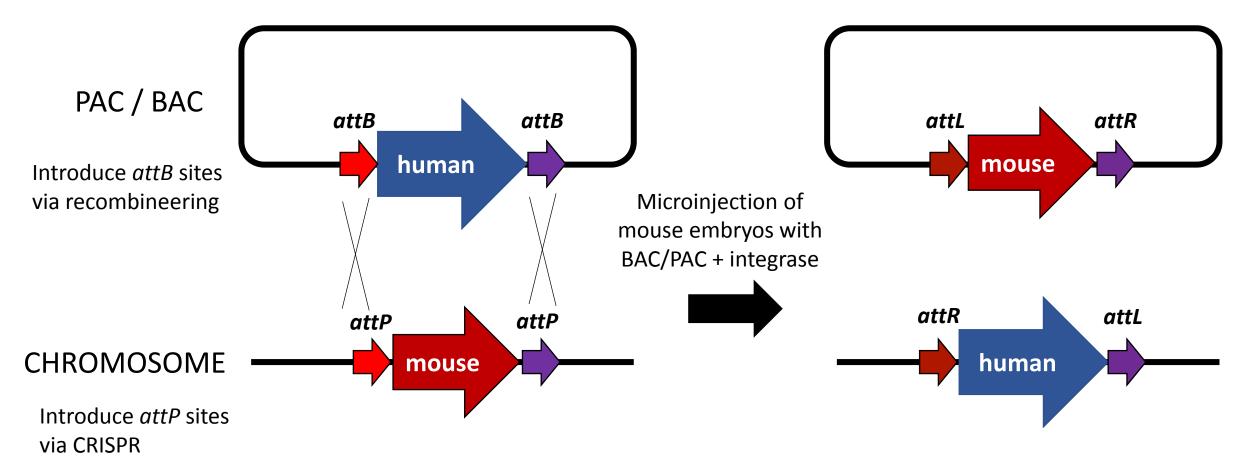




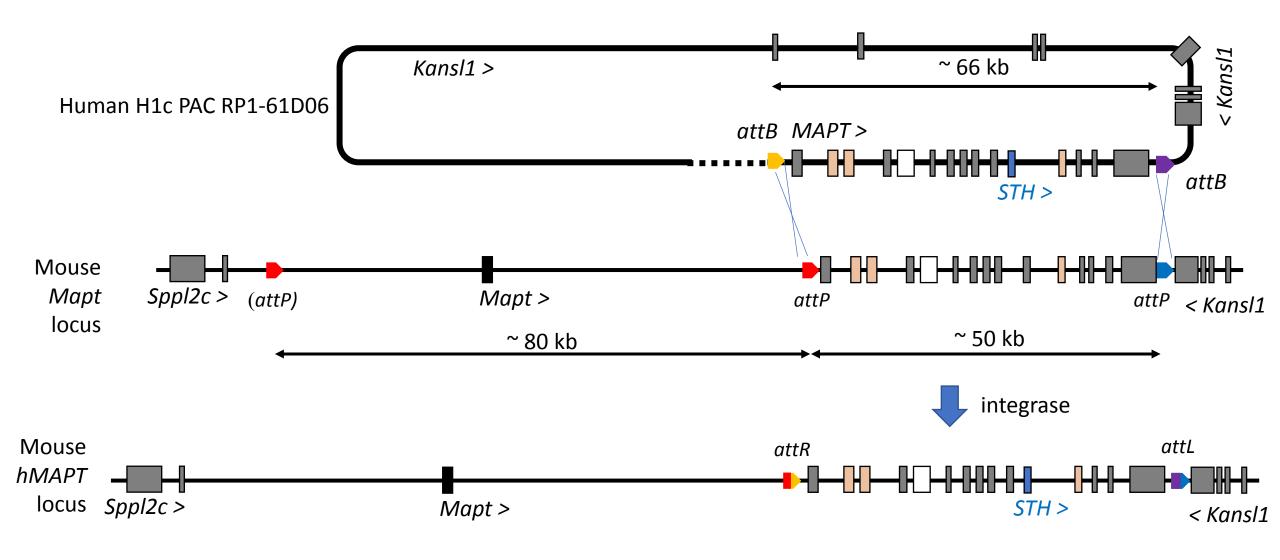
Mice expressing humanized wild-type Aβ display age-related altered cognition, electrophysiology and gene-expression

Program, Approved Format, and original ID	Session Name, Date, Time	Presentation Title	Accept	Decline	Role	Presentation Time
Association	O1-01 Development of New Models and Analysis Methods: Novel Model Systems to Study Dementia, <i>Sunday, July 22, 2018:</i> 8:00 AM - 9:30 AM, McCormick Place, Room - 184	O1-01-04 Haβ-KI: A Knock-in Mouse Model for Sporadic Alzheimer's Disease			Presenting Author O-Vargas	8:45 AM-

Timeline for Development of Pathology in Mouse AD MODELS



Strategy to humanize mouse *Mapt* (TAU), *Clu* and other loci using Recombinase Mediated Cassette Exchange (RMCE)



hTau-KI mice - humanization of mouse Mapt via RMCE

IU/JAX Disease Modeling Project: 40 new models of LOAD

B6J.APOE^{E4/E4}TREM2^{R47H/R47H}
Common name: B6J.hAT

Early goals of IU/JAX DMP

- Characterize commonly used EOAD models
 - APP/PS1 (Borchelt)
 - 5xFAD (Vassar)
 - hTau (Davies)
- Characterize newly created B6J.hAT LOAD model
- Introduce known GWAS human variants into APOE/TREM 'sensitizer' strain.
- Characterize and stage F344-Tg(PrP-APP, PrP-PS1) – rat model of EOAD

Clinically-relevant deep phenotyping

AMP-AD, ADNI etc.	MODEL-AD			
Assay	Primary Screening 2, 6,12 months 24 models	Deep Phenotyping 4, 8, 12, (18 months) Prioritized models		
Amyloid and tau pathology	•	•		
Neuroinflammation	•	•		
Neuronal cell loss	•	•		
Biomarkers	•	•		
Biomarkers (Quanterix)		•		
Transcriptomes (NanoString)	•			
Transcriptomes (RNA-seq)		•		
Transcriptomes (scRNA-seq)		pilot study*		
Proteomics		pilot study*		
Metabolomics		pilot study*		
Imaging (FDG, PET/MRI)		•		
Cognitive tests		•		

Human-mouse assay

• identical

similar

Pilot studies

using B6J.5xFAD and B6J.hAT

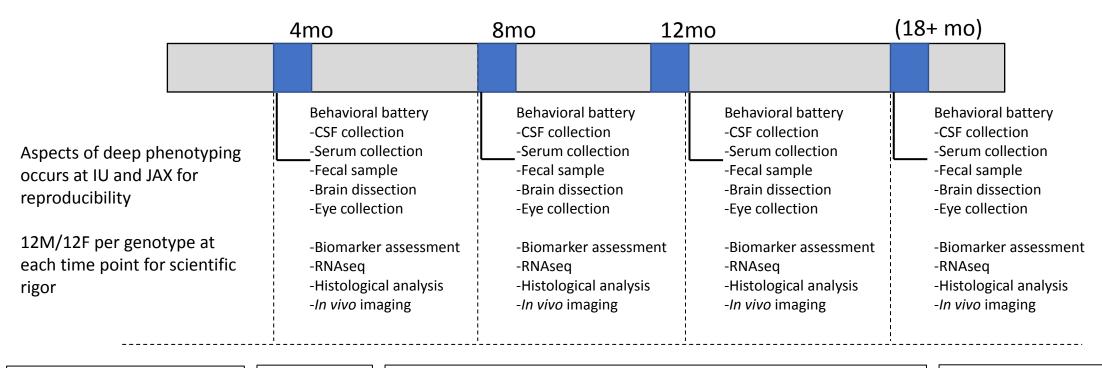
scRNA-seq:

de Jager

Proteomics:

Seyfried

Metabolomics: Kaddurah-Daouk



Clinically-relevant deep phenotyping

In vivo imaging by MR/PET:

Amyloid: 18F-AV45

Tau: 18F-1451

Glucose: 18F-FDG

Blood flow: 64Cu-PTSM

Biomarkers:

AB, Tau

Nfl

Neurogranin

sTREM2

Histology:

Gross morphology/white matter: Luxol fast blue and Cresol Violet

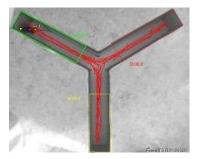
Neurons: NeuN and CTIP

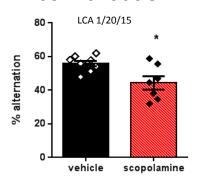
Plaques, dystropic neurites and myeloid cells: X34, LAMP1 and IBA1

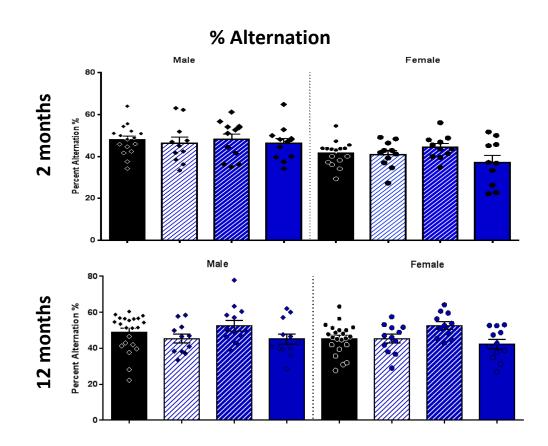
TAU: AT8 and H&E

Neuroinflammation: IBA1 and GFAP Vascular health: CD31 and IBA1

Pilots: Proteomic and metabolomics profiling Considering: Microbiome






B6J.*hAT:* No differences in hippocampal working memory between genotypes and ages

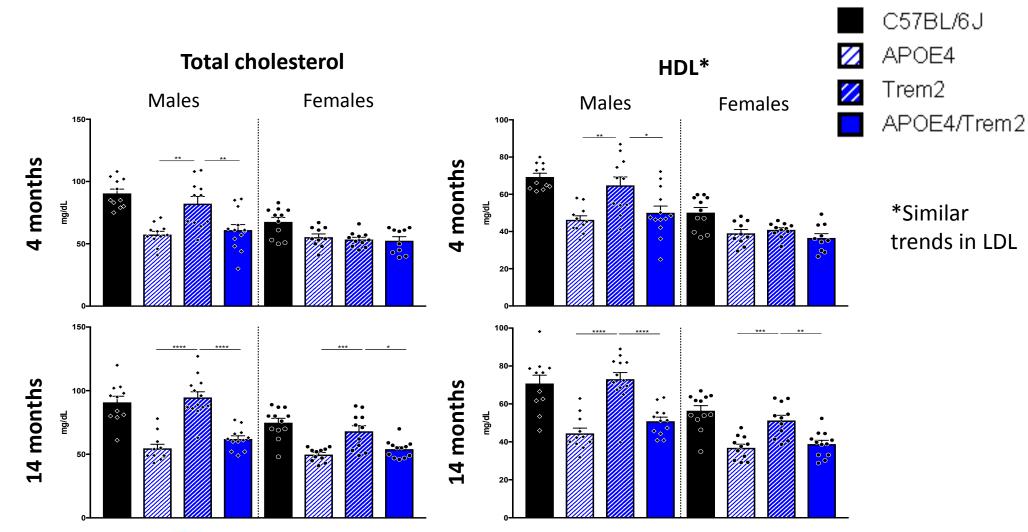
Spontaneous Alternation

Task validation

C57BL/6J

APOE4/Trem2

APOE4

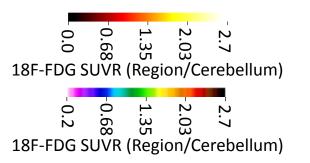

Trem2

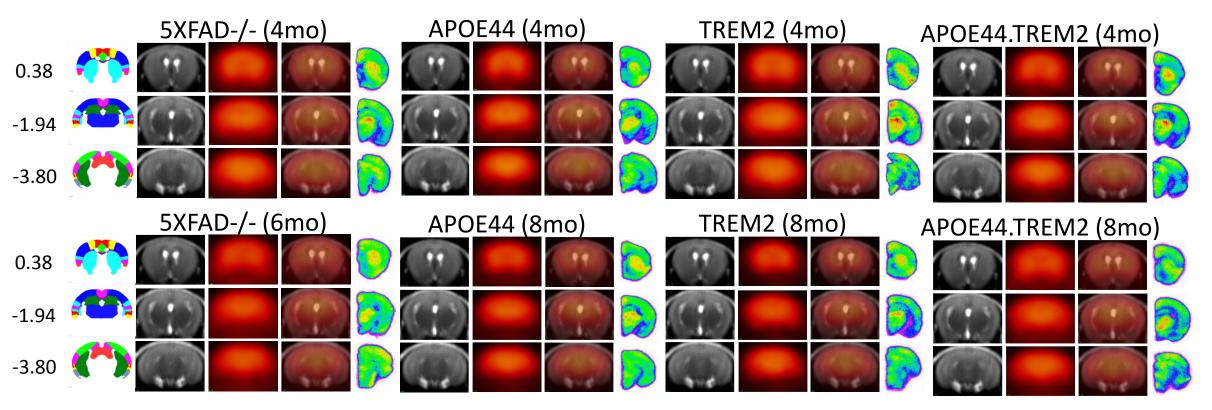
B6J.hAT: Differences in lipid profiles driven by APOE^{E4}

Blood collected at harvest (non-fasted)

Assessed for:

Total Cholesterol LDL HDL Triglycerides Non-essential FA Glucose





B6J.hAT: PET/MR imaging (3T) with 18F-FDG

Preliminary findings: No significant changes across 27 brain regions comparing all genotypes at 4 and 8 mos

B6J.hAT Summary and Future plans

- APOE^{E4}-dependent changes in lipid profiles
- No age-dependent decline in glucose uptake across all genotypes
- No evidence of cognitive decline (measured using spontaneous alternation) up to 12 months of age

- Analyses of RNA sequence data of half brains underway
- Histological and biochemical assessment of tissue underway
 - Neuroinflammation, cerebrovascular health, amyloid and Tau

Next step: Deep phenotyping *B6J.APOE*^{4/4} *TREM2*^{<*R47H*>} mice with humanized *APP*

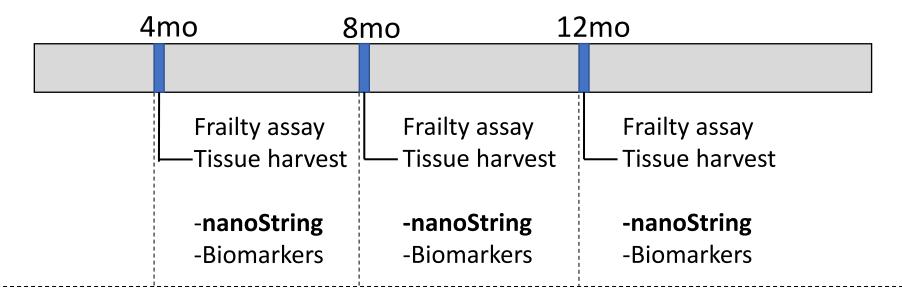
B6J.hATAB6J.APOE^{E4/E4}TREM2^{R47H/R47H}App^{h/}

Primary screen of novel variants on sensitized genetic background

B6J.hAT

- New strains created and in the primary screening pipeline
 - Abca 7^{A1527G} , Il1rap KO , Ceacam 1^{KO} , $Plcg2^{M28L}$, $Mthfr^{A222V}$
- Ten others in CRISPR pipeline using B6J.APOE^{4/4} TREM2<R47H>
- Up to 40 variants to be created with 24 to be screened

B6J.hATA



A primary screen to prioritize candidate variants for deep phenotyping

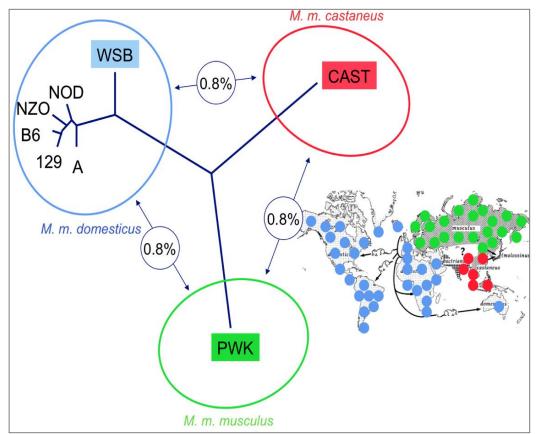
Promising strains prioritized for deep phenotyping

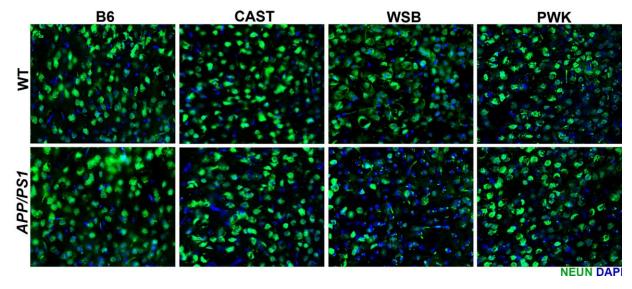
A nanoString panel to align mouse models to human data: AMP-AD panel

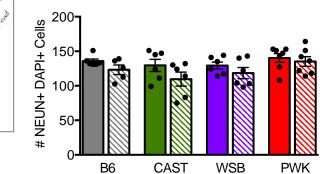
- Panel of 770+30 mouse gene probes
 - Maximize coverage of 30 AMP-AD modules
 - Include top AMP-AD candidates (Top 30, AGORA targets)
 - Genes ranked by
 - representation of module PCs (gene score)
 - ortholog expressed in mouse brain at 6 months of age
 - 10 housekeeping genes

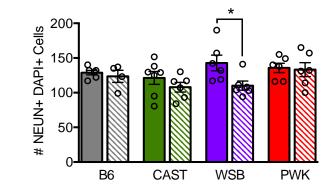
AMP-AD Module	Nanostring probes per module	AMP-AD Module Size	% of Module Covered
aggregateCBEblue	177	4505	3.93
aggregateCBEbrown	95	504	18.85
aggregateCBEturquoise	200	1977	10.12
aggregateCBEyellow	157	1738	9.03
aggregateDLPFCblue	183	1751	10.45
aggregateDLPFCbrown	139	882	15.76
aggregateDLPFCturquoi			
se	144	2489	5.79
aggregateDLPFCyellow	192	3016	6.37
aggregateFPblue	278	1991	13.96
aggregateFPbrown	76	1287	5.91
aggregateFPturquoise	107	1001	10.69
aggregateFPyellow	188	4420	4.25
	etc		

Coverage ranges from 76-278 genes per module



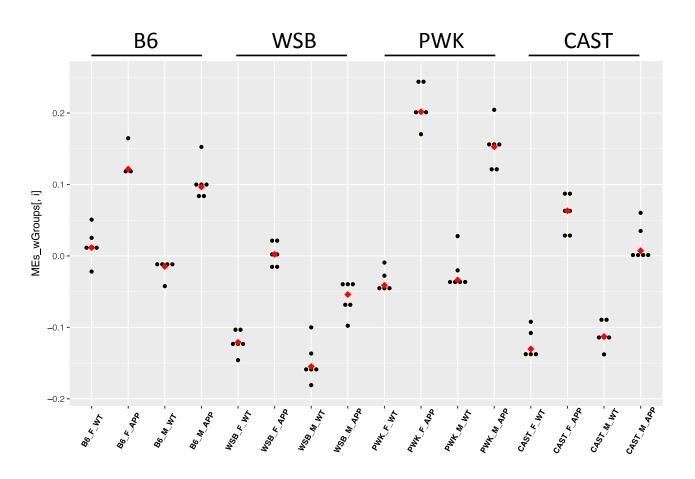



Genetic context is important


APP/PS1 on B6J and wild-derived strains

Male Cortical Neuron Counts

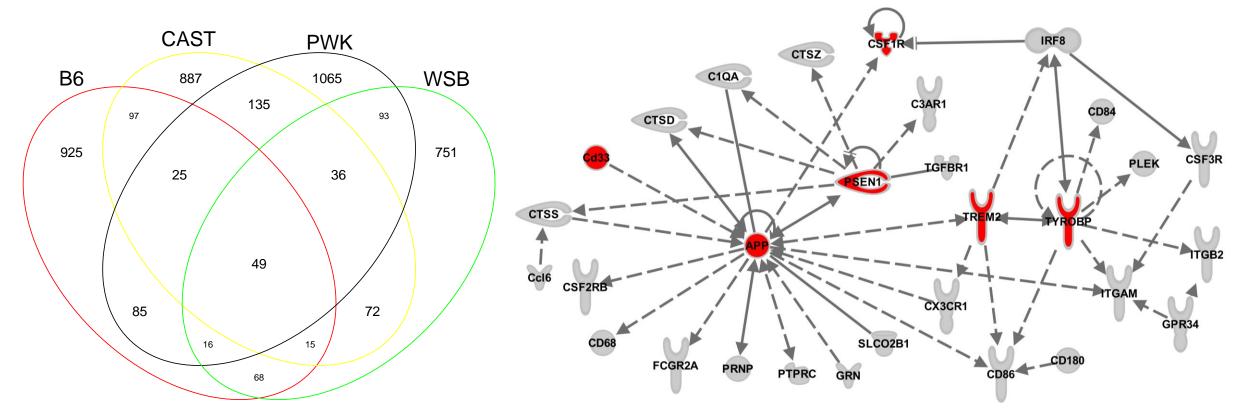
Female Cortical Neuron Counts



Transcriptome analyses by WGCNA shows variation in amyloid response between strains

Genes in module

Itgb2	Tbxas1
Cd52	Tyrobp
Spi1	Tgfbr2
Ptpn6	Arpp21
Ctsd	Vav1
Ctsz	Cd84
Abi3	Ctss
Cd68	Gpr34
Cd180	Cd53
Fyb	Irf8
Арр	Fam46c
Pros1	Tlr7
Trem2	Mpeg1
Csf1r	Gpr84
Cndp2	Csf2rb
Ptprc	Prnp
Slamf9	
Laptm5	2900079G21Rik



Strain-specific transcriptome analyses shows variation in genetic 'drivers' of AD

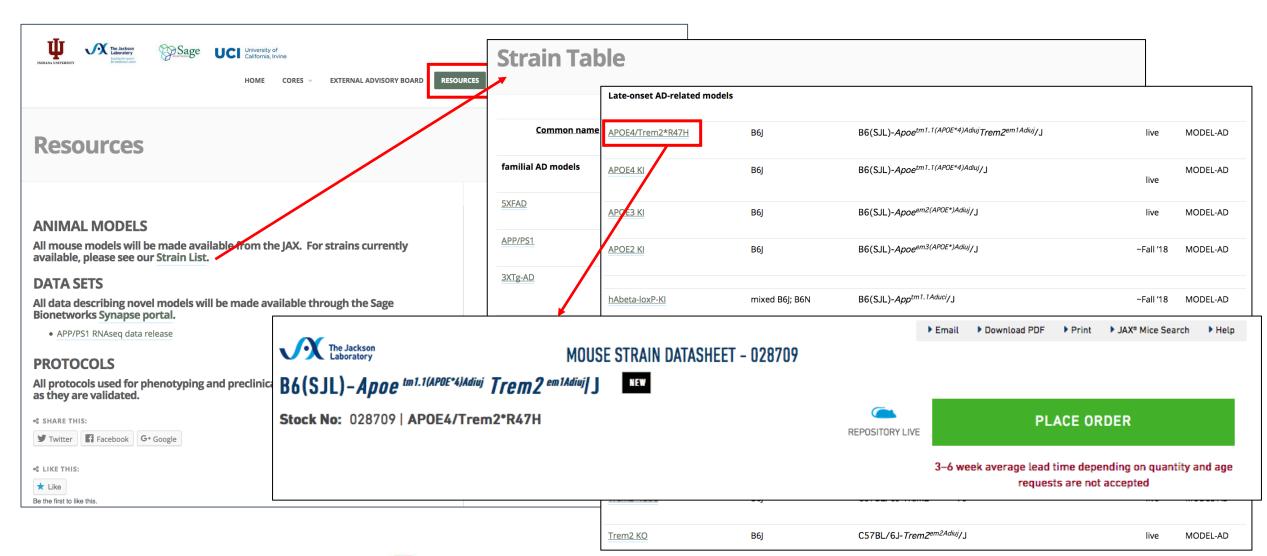
Generalized linear modeling

Summary: Evaluating the Translational Validity of Mouse Models of LOAD by clinically relevant deep phenotyping

- Creating up to 50 mouse models relevant to Alzheimer's disease
 - Includes creating a humanized platform (APP, TAU, APOE) for testing novel variants
 - Approximately 20 models created or in progress including AB-KI, hAT
- Perform clinically-relevant deep phenotyping of key (>10) models
 - Including in vivo imaging (MR/PET) and RNA-seq
 - Data available for 4 existing (5xFAD, 3xTG, APP/PS1, hTau) and 2 new models (hAB-KI, APOE4/TREM2<R47H>)
 - Pilots for proteomics and metabolomics underway

INDIANA UNIVERSITY

- All data and mouse strains made available through Synapse and JAX mouse repository (as well as other sources)
 - 23 models either available to order, available for preorder, or in preparation
 - ~265 RNA-seq data files submitted/being submitted to Synapse (many more to come!)



Strains and data available from model-ad.org

The MODEL-AD Consortium

Indiana University

Bruce Lamb, Program Director
Paul Territo, PTC Head
Andrew Saykin, BDMC Co-Head
Adrian Oblak, Project Manager
Kwangsik Nho
Li Shen
Tatiana Foroud
Dino Ghetti
David Jones
Sarah Quinney
Deborah DeBusk, Administrator

Sage Bionetworks

Lara Mangravite, BDMC Co-Head
Larsson Omberg
Ben Logsdon
Mette Peters
Solveig Sieberts
Yooree Chae

The Jackson Laboratory

Gareth Howell, DMP Head
Greg Carter, BDMC Head
Mike Sasner, DMP Co-Head
Stacey Rizzo, PTC Co-Head
Harriet Williams, Project Manager
Christoph Preuss
Asli Uyar
Yi Li
Ravi Pandey
Cai John
Nikhil Milind
Kristen Onos
Martha Abbott, Administrator

UC Irvine

Frank LaFerla, Program Director Andrea Tenner, Program Director Grant MacGregor, DMP Head Ali Mortazavi, BDMC Head Kim Green, DMP Co-Head Marcelo Wood, DMP Co-Head Stefania Forner, Project Manager **David Baglietto-Vargas** Shan Jiang Shimako Kawauchi Sherilyn Collins Jonathan Neumann **Eniko Kramar** Edna Hingco **Dina Matheos** Maria Fonseca Andrea Wasserman, Administrator

Contact

www.model-ad.org modelad@iupui.edu @Model_ad_alz

National Institute on Aging

Suzana Petanceska Lorenzo Refolo U54 AG054345, U54 AG054349

