Biomarker Core report: Year1 ADNI3, Roche Elecsys immunoassay analyses of ADNI1/GO/2 CSF samples

Leslie M Shaw and John Q Trojanowski, UPenn
Why automation of CSF biomarkers?

• Eliminate as many manual steps as possible
• Promote best possible precision & accuracy
 — Within-lab
 — *Between-labs*
 • using common samples, eg AlzAssn QC program
 • Same study population and pre-analytical protocol, eg, treatment trials
 • Different study populations and pre-analytical protocols, eg, ADNI, BioFINDER
• Improved lot-to-lot performance
• Enable IVD test approval → clinical laboratory test
• Can provide both accurate and precise data
• Use in treatment trials, especially international where local laboratory is essential (eg, China).
Between-labs performance: Alz Association QC program

Between laboratory CV (percent)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ELISA</td>
<td>ELISA</td>
<td>Luminex</td>
<td>ECL V-PLEX</td>
<td>Fully automated</td>
<td>Fully automated</td>
</tr>
<tr>
<td>2014-14A</td>
<td>18</td>
<td>21</td>
<td>16</td>
<td>low n</td>
<td>2,9</td>
<td>4,4</td>
</tr>
<tr>
<td>2014-14B</td>
<td>15</td>
<td>21</td>
<td>19</td>
<td>low n</td>
<td>4,6</td>
<td>3</td>
</tr>
<tr>
<td>2014-15A</td>
<td>17</td>
<td>27</td>
<td>7,1</td>
<td>12</td>
<td>4,3</td>
<td>3</td>
</tr>
<tr>
<td>2014-15B</td>
<td>17</td>
<td>57</td>
<td>14</td>
<td>12</td>
<td>3,4</td>
<td>3</td>
</tr>
<tr>
<td>2104-16A</td>
<td>27</td>
<td>40</td>
<td>40</td>
<td>13</td>
<td>2,5</td>
<td>2</td>
</tr>
<tr>
<td>2014-16B</td>
<td>17</td>
<td>30</td>
<td>19</td>
<td>11</td>
<td>1,9</td>
<td>3</td>
</tr>
<tr>
<td>2015-17A</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>1</td>
<td>7,2</td>
<td>4</td>
</tr>
<tr>
<td>2015-17B</td>
<td>14</td>
<td>15</td>
<td>8,2</td>
<td>20</td>
<td>3,2</td>
<td>4</td>
</tr>
<tr>
<td>2015-18A</td>
<td>13</td>
<td>25</td>
<td>16</td>
<td>20</td>
<td>7,2</td>
<td>4</td>
</tr>
<tr>
<td>2015-18B</td>
<td>13</td>
<td>10</td>
<td>13</td>
<td>9,4</td>
<td>1,5</td>
<td>3</td>
</tr>
<tr>
<td>2015-19A</td>
<td>14</td>
<td>ND</td>
<td>15</td>
<td>10</td>
<td>1,5</td>
<td>3</td>
</tr>
<tr>
<td>2015-19B</td>
<td>13</td>
<td>ND</td>
<td>ND</td>
<td>Level out of range</td>
<td>1,5</td>
<td>3</td>
</tr>
<tr>
<td>2016-20A</td>
<td>17,4</td>
<td>18</td>
<td>ND</td>
<td>14</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2016-20B</td>
<td>21,1</td>
<td>15,4</td>
<td>ND</td>
<td>Level out of range</td>
<td>10</td>
<td>6,3</td>
</tr>
<tr>
<td>2016-21A</td>
<td>15</td>
<td>22</td>
<td>8,1</td>
<td>10</td>
<td>6,3</td>
<td>4</td>
</tr>
<tr>
<td>2016-21B</td>
<td>11</td>
<td>29</td>
<td>7,4</td>
<td>5,2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2016-22A</td>
<td>14</td>
<td>28</td>
<td>39</td>
<td>5,9</td>
<td>7,5</td>
<td></td>
</tr>
<tr>
<td>2016-22B</td>
<td>19</td>
<td>24</td>
<td>37</td>
<td>6,7</td>
<td>9,4</td>
<td></td>
</tr>
</tbody>
</table>

Mean:

- **INNOTEST®** 16,5
- **EurolImmune / ADx** 17,6
- **AlzBio3** 22,1
- **Meso-Scale Human Aβ42** 15,5
- **Elecsys®** 4,2
- **Lumnipulse®** 6,8
ADNI3 Aims for Biomarker Core

Aim 2: Provide highly standardized $\text{A}\beta_{1-42}$, t-tau and p-tau$_{181}$ measurements on all ADNI subject CSF samples using the Roche automated immunoassay platform (Cobas e601) and immunoassay reagents. In addition provide immunoassay-independent measurements of $\text{A}\beta$ species ($\text{A}\beta_{1-42}$, $\text{A}\beta_{1-40}$ and $\text{A}\beta_{1-38}$) using a validated reference 2D-UPLC/tandem mass spectrometry method in baseline and longitudinal CSF samples. Continue collaboration with other investigators to achieve harmonization of these measurements across centers and different platforms in support of their use in clinical trials.

- **Change:** from manual RUO immunoassay to fully automated immunoassay platform for ADNI 3:
- **Due diligence:** started Q4, 2014, in consultation with ADNI Exec Comm & NIA & PPSB/BBWG/DDWG.
- **Selection:** in consultation with ADNI PPSB/BBWG/DDWG, chaired by Johan Luthman.
- **Roche Elecsys:** validation for $\text{A}\beta_{1-42}$ in CSF completed.
- **External QC:** Participation in the AlzAssn CSF QC program for $\text{A}\beta_{1-42}$
- **Validation of t-tau and p-tau$_{181}$:** completed FALL, 2016
- **Analyses of all ADNI CSFs:** late FALL, 2016-early WINTER, 2017
- **Continued collaboration:** with Kaj Blennow & AlzAssn and IFCC CSF WGs to produce certified reference CSF pools with assigned reference $\text{A}\beta_{1-42}$ concentration values, measured with reference 2D-UPLC/tandem mass spectrometry, to provide certified reference materials for manufacturers of $\text{A}\beta_{1-42}$ calibrators--promoting harmonization across assay platforms.
- **Review & participate in:** studies of pre-analytical factors for CSF collection.
Analysis of 2401 ADNI1/GO/2 CSF samples

2401 ADNI pristine CSFs, collected from 9/7/2005 to 7/25/2016 were analyzed in 36 analytical runs at UPenn from 11-17-2016 to 1-20-2017:

• 402 ADNI1 BASELINE; 819 ADNIGO/2 BASELINE

• ADNI1:
 112 HC, 192 MCI, 98 AD

• ADNIGO/2:
 160 HC, 96 SMC, 277 EMCI, 154 LMCI, 132 AD
Analyses of ADNI1/GO/2 CSF $A\beta_{1-42}$, t-tau, p-tau$_{181}$ using the Roche Elecsys fully automated immunoassay platform

- Rationale for moving from RUO to full automation
- Validation of $A\beta_{1-42}$ for precision, accuracy, and clinical performance
- General statistics for $A\beta_{1-42}$, t-tau, p-tau$_{181}$, t-tau/$A\beta_{1-42}$, p-tau$_{181}$/Aβ_{1-42} in the ADNI1/GO/2 CSF samples
- Histogram distributions for $A\beta_{1-42}$, t-tau$/A\beta_{1-42}$, p-tau$_{181}$
- Distributions based on FBP amyloid-β PET + or –
- Cutpoint determinations
- Collaborative study with BioFINDER
- Concordance with FBP amyloid-β PET
- Prediction of cognitive decline(CDRsob)
- Summary
Method validation studies at UPenn: Roche Elecsys immunoassay

CSF Aβ1-42:

- Analytical studies
 - Short and long-term precision studies
 - Linearity
 - Comparison of Elecsys between UPenn and Roche
 - Comparison with a reference mrm/mass spectrometry method
 - Comparison with the RUO AlzBio3 immunoassay
 - Two sets of non-ADNI CSF samples utilized (250 residual CSF from routine clinic patients; 129 CSFs from the UPenn ADRC)
- ROC analyses for AD vs HC in 129 CSFs from the UPenn ADRC (62 AD, 67 HC)
UPENN/Roche comparison (both use Roche Elecsys, 15 CSF pools): PB regression—Y = 1.04X - 24.8; Pearson’s r = 0.994

- Bias at cut-off <10%
- Slope is within 1.0 ± 0.1

Elecsys, AlzBio3 and LC-MS Abeta(1-42) measurements were performed for 250 samples from data set A and 129 samples from data set B

Data set A and B were not pooled as AlzBio3 measurements differed between the two sample sets

Correlation between

- Elecsys and AlzBio3: Spearman’s rho 0.86(A)/0.82(B); some non-linearity
- Elecsys and LC-MS: Spearman’s rho 0.95(A)/0.96(B); Linear relationship
- LC-MS and AlzBio3: Spearman’s rho 0.87(A)/0.77(B); some non-linearity

ROC-AUC analysis within the data set B(AD vs HC): equivalent performance of all 3 methods

Toronto 2016 AAIC meeting poster & included in an AAIC symposium talk.
Figure 2: Comparison and analysis of individual Aβ(1–42) concentrations obtained for each sample for the three methods. The shaded area of the proportional bias graph (panel B) represents the 95% confidence interval.
Figure 3: Clinical performance of Aβ(1–42) measurements of the three methods. Left panel: Box plots of Aβ(1–42) measurements analysed according to clinical diagnosis information (AD vs controls). Right panel: ROC analysis (sensitivity vs 1-specificity).

All valid measurements

Sample size, N (group)
Elciaays®: 59 (AD), 66 (normal)
AlzBio3: 62 (AD), 66 (normal)
LC-MS/MS: 55 (AD), 67 (normal)

ROC–AUC
Elciaays® AUC: 92.4% (87.9%–96.8%)
AlzBio3 AUC: 92.1% (87.4%–96.0%)
LC-MS/MS AUC: 91.7% (89.9%–93.5%)

AUC = area under the curve, ROC = receiver operating characteristic
ADNI 3: Batch analyses of Aβ1-42, t-tau and p-tau181 in ADNI1 and ADNIGO/2 CSF using the fully automated Roche Elecsys and cobas e immunoassay analyzer system

Leslie M Shaw, Michal Figurski, Leona Fields and John Q Trojanowski

ADNI Biomarker Core, Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Diseases Research, Perelman School of Medicine University of Pennsylvania (UPenn)

Please note:

The Elecsys β-Amyloid(1-42) CSF immunoassay in use is not a commercially available IVD assay. It is an assay that is currently under development and for investigational use only. The measuring range of the assay is 200 (lower technical limit) – 1700 pg/mL (upper technical limit). The performance of the assay beyond the upper technical limit has not been formally established. Therefore use of values above the upper technical limit, which are provided based on an extrapolation of the calibration curve, is restricted to exploratory research purposes and is excluded for clinical decision making or for the derivation of medical decision points.
Roche Elecsys versus LC/MS for ADNI1 BASELINE CSF Aβ\textsubscript{1-42}

→ Confirms finding from UPenn Method Comparison study: linear relationship and approximately 1:1
Comparisons between Roche Elecsys & AlzBio3 immunoassays for ADNI1/GO/2 CSFs.
Numbers inside the boxes are the respective median values for BL $A\beta_{1-42}$ in pg/mL placed above the median value horizontal line.

*p<0.005 for LMCi ADNIGO+2 vs ADNI1; p=0.11 for NL ADNIGO+2 vs ADNI1; p=0.23 for AD ADNIGO+2 vs ADNI1
Numbers inside the boxes are the respective median values for BL t-tau in pg/mL placed above the median value horizontal line. P=0.81 for NL ADNIGO+2 vs ADNI1; p=0.51 for MCI ADNIGO+2 vs ADNI1; p=0.81 for AD ADNIGO+2 vs ADNI1
Numbers inside the boxes are the respective median values for p-tau$_{181}$ in pg/mL placed above the median value horizontal line.

*p=0.71 for ADNIGO+2 vs ADNI1; p=0.43 for MCI ADNIGO+2 vs ADNI1; p=0.88 for AD ADNIGO+2 vs ADNI1.
Frequency distribution plots: upper are mixture model plots for all ADNIGO/2 SMC, EMCI, LMCI, AD, lower are FBP+ and FBP- for ADNI SMC/EMCI/LMCI/AD

$A\beta_{1-42}$

$\text{tau}/A\beta_{1-42}$

$\text{ptau}_{181}/A\beta_{1-42}$
ROC Curves for SMC+EMCI+LMCI+AD CSF biomarkers using FBP PET+/- as the clinical endpoint*

AUC values:

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Sens</th>
<th>Spec</th>
<th>Eff</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-tau/Aβ_{1-42}</td>
<td>0.944</td>
<td>91.3%</td>
<td>88.5%</td>
</tr>
<tr>
<td>t-tau/Aβ_{1-42}</td>
<td>0.940</td>
<td>91.6%</td>
<td>87.4%</td>
</tr>
<tr>
<td>Aβ_{1-42}</td>
<td>0.889</td>
<td>86.7%</td>
<td>81.7%</td>
</tr>
<tr>
<td>p-tau_{181}</td>
<td>0.845</td>
<td>79.9%</td>
<td>74.8%</td>
</tr>
<tr>
<td>t-tau</td>
<td>0.803</td>
<td>74.0%</td>
<td>72.9%</td>
</tr>
</tbody>
</table>

Cutpoint values:

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Cutpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-tau/Aβ_{1-42}</td>
<td>0.021</td>
</tr>
<tr>
<td>t-tau/Aβ_{1-42}</td>
<td>0.222</td>
</tr>
<tr>
<td>Aβ_{1-42}</td>
<td>980 pg/mL</td>
</tr>
<tr>
<td>p-tau_{181}</td>
<td>21.8 pg/mL</td>
</tr>
<tr>
<td>t-tau</td>
<td>245 pg/mL</td>
</tr>
</tbody>
</table>

*SUVR of 1.1 used: Landau and Jagust
Cutpoint assessments for CSF Aβ$_{1-42}$, t-tau & p-tau$_{181}$ in ADNI

• ROC with FBP PET as the endpoint:
 • Aβ$_{1-42}$, 980 pg/mL t-tau/Aβ$_{1-42}$, 0.22
 • t-tau, 245 pg/mL p-tau$_{181}$/Aβ$_{1-42}$, 0.021
 • p-tau$_{181}$, 21.8 pg/mL

• Disease-independent mixture modeling
 • Aβ$_{1-42}$, 1016 pg/mL t-tau/Aβ$_{1-42}$, 0.19
 • t-tau, NA p-tau$_{181}$/Aβ$_{1-42}$, 0.018
 • p-tau$_{181}$, NA

• Prediction from BioFINDER study based on pre-analytic differences
 • Aβ$_{1-42}$, 880 pg/mL t-tau/Aβ$_{1-42}$, 0.33
 • t-tau, 270 pg/mL p-tau$_{181}$/Aβ$_{1-42}$, 0.028
 • p-tau$_{181}$, 24 pg/mL
Concordance plots for FBP vs CSF Aβ_{1-42} in ADNIGO/2 SMC, EMCI, LMCI & AD participants at BASELINE (disease-independent mixture model-based cutpt)
Concordance plots for FBP vs CSF tau/Aβ\textsubscript{1-42} in ADNIGO/2 SMC, EMCI, LMCI & AD participants at BASELINE (disease-independent mixture model-based cutpt)
Concordance plots for FBP vs CSF ptau/\(\text{A}\beta_{1-42}\) in ADNIGO/2 SMC, EMCI, LMCI & AD participants at BASELINE (disease-independent mixture model-based cutpt)
Prediction of cognitive decline (CDRsoB) in ADNIGO/2 LMCI subjects

Vertical red arrow points to regression line for CDRsoB values associated with Aβ1-42 values below cutpoint value, t-tau/Aβ1-42 values above cutpoint value, and logistic regression model (includes Aβ1-42, t-tau and APOE ε4 allele # as covariates) values above cutpoint value.
Summary

• Roche Elecsys immunoassays for Abeta1-42, t-tau and p-tau181 completed for 2401 ADNI1/GO/2 CSFs, and uploaded on the ADNI/LONI website, March 2017
• Precision and accuracy validations completed according to CLSI EP05
• General stats, Frequency distributions, mixture modeling & ROC with FBP PET as endpt described
• The t-tau/Abeta1-42 and p-tau181/Abeta1-42 ratios outperformed Abeta1-42 alone for clinical utilities based on:
 • Comparisons to FBP PET in ROC analyses
 • Concordance with FBP PET
 • Disease-independent mixture modeling
 • This observation is consistent with the BioFINDER study (using Roche platform/flutemetmol PET) as well as multiple other studies that used other immunoassay platforms and clinical endpoints:
 • Seeburger, 2015 (OPTIMA study, N=227, autopsy-based diagnosis); Fagan, 2011 (HASD, PIB PET based endpoint, N=103); Palmqvist, 2015 (BioFINDER, Flutemetamol PET, N=366)
 • Mechanism possibilities: normalization of variance; tau abnormality adds to predictive performance; further studies needed
• Cutpoint assessments: ROC with FBP as endpoint; disease independent mixture modeling; extrapolation from BioFINDER study based on pre-analytical differences
• Prediction performance of BASELINE CSF AD biomarkers for cognitive decline documentation
• Continue ongoing work with ADNI and other studies toward goal of defining universal cutpoints for Abeta1-42, t-tau and p-tau181
• Continue to work with colleagues on pre-analytical and other factors to help minimize and control these sources of variability
• Implement in ADNI3
• Collaboration on multimodal studies that include CSF, imaging, genetic, clinical parameters
ACKNOWLEDGEMENTS

Biomarker Research Lab
Magdalena Korecka
Michal Figurski
Magdalena Brylska
Teresa Waligorska
Leona Fields
Jacob Alexander
Ju Hee Kang

CNDR/ADRC
John Trojanowski
Virginia M-Y Lee
Steve Arnold
Murray Grossman
Jon Toledo
Alice Chen-Plotkin

William Hu
Anne Fagan
Hugo Vanderstichelen
Kaj Blennow
Henrik Zetterberg
Chris Clark*
Manu Vandijck
John Lawson
Tobias Bittner
Udo Eichenlaub
The Roche team

Robert Dean
Holly Soares
Adam Simon
Eric Siemers
Piotr Lewczuk
William Potter
Rand Jenkins
Erin Chambers

Supported by the NIH/NIA and families of our patients

MJ Fox Fdn for PD research
ADNI investigators include: (complete listing available at www.loni.usc.edu\ADNI\Collaboration\ADNI_Manuscript_Citations.pdf)