### Alzheimer's Association Global Biomarkers Standardization Consortium

# **CSF Round Robin Program**

Leslie M Shaw
Perelman School of Medicine
University of Pennsylvania



# CSF round robin program

- Initial focus: CSF  $A\beta_{1-42}$
- Analytical methodology: srm/tandem mass spectrometry
- Involve volunteer labs with significant experience in mass spectrometry analyses of biomarkers
- Follow an agreed on protocol
- Assess precision across 4 participating labs using CSF pools
- Share raw data amongst the labs
- Statistical analysis
- Report data to peers
- Publish this pilot study

# CSF round robin program

- The 4 participating labs: Waters (Erin Chambers); PPD (Rand Jenkins);
   UPenn (Les Shaw); UGot (Kaj Blennow)
- Initial reports of methods in literature and in ASMS & AAIC meetings
- Initial pilot study compared performance across 4 participating laboratories; initial report at the AAIC 2013 meeting; manuscript submitted
- N=12 CSF pools (prepared & shipped by UGot to each participant laboratory
- Use of a common sample preparation methodology
- 3 different mass spectrometer systems and 3 different HPLC systems
- 4 different calibration matrices
- Single-plex, triplex or pentaplex methods utilized
- Different batches of high purity rPeptide  $A\beta_{1-42}$  standard utilized

# Alzheimer's Association Global Biomarker Standardization Consortium

Four Center collaborative study of mrm/tandem mass spectrometry reference methodology for measurement of  $A\beta_{1-42}$  in 12 CSF pool samples

- 3 MS platforms
  - Thermo TSQ Vantage
  - Waters TQ-S
  - ABI Sciex API 5000
- 3 HPLC platforms
  - ACUITY 1D
  - ACUITY 2D
  - Accela 1250
- 4 different surrogate matrices
  - Artificial CSF + 5% rat plasma
  - Artificial CSF + 4 mg/mL BSA
  - Salt and phosphate buffer solution + 4 mg/mL HSA, 0.05 mg/mL lgG, glucose
  - Human CSF using N15 labeled  $A\beta_{1-42}$  as calibrator
- Single-plex, tri-plex or penta-plex methods employed
- Sample preparation is the same across the 4 centers

# Laboratories participating in the Global Biomarker Standardization Consortium collaborative study

- Erin Chambers & Mary Lame, Waters & Pfizer
- Moucun Yuan, Junlong Shao, William R. Mylott, and Rand Jenkins, PPD
- Magdalena Korecka, John Trojanowski, Leslie Shaw, UPenn
- Henrik Zetterberg, Kaj Blennow, Josef Pannee, Erik Portelius, Johan Gobom, UGot

## mrm LC/MSMS method for Aβ peptides in CSF

- Aβ peptides from rPeptide
- $N^{15}$ -A $\beta$  peptide ISTDs added to CSF samples
- Guanidine·HCI

SPE extraction – 96 well

**Format** 

2D HPLC/SRMtandem mass spectrometry



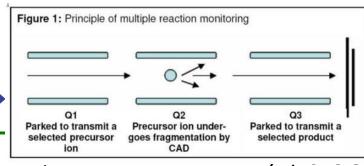
Eppendorf LoBind Oasis MCX
Tubes µElution Plate

ACQUITY UPLC Trapping column Analytical column

• UPLC BEH-300

• C18 2.1x150mm, 1.7 μm

TRAPPING PUMP


TRA

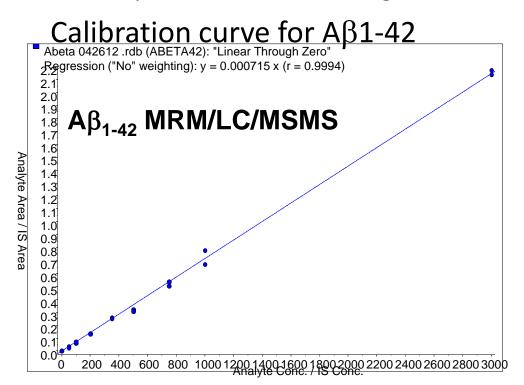
ANALYLICAL

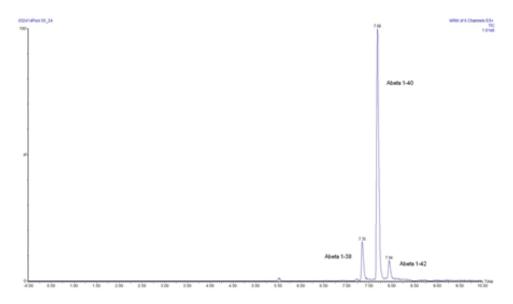
Injection position of switching

valve - 2D chromatography

Korecka M et al, AAIC 2012 Poster #P1-317




m/z 1129.0  $\longrightarrow m/z$  1078.8


 $(A\beta_{1-42} \text{ precursor } [4+] \text{ ion})$  (product [4+] ion)

AB SciexTandem mass spectrometer API 5000

## SRM-tandem mass spectrometry

- Established
  - Surrogate matrix
  - LLOQ/UPOQ
  - Linearity
  - Precision performance
  - Recovery from hCSF
  - Freedom from ion suppression
  - Equivalence between surrogate matrix ar





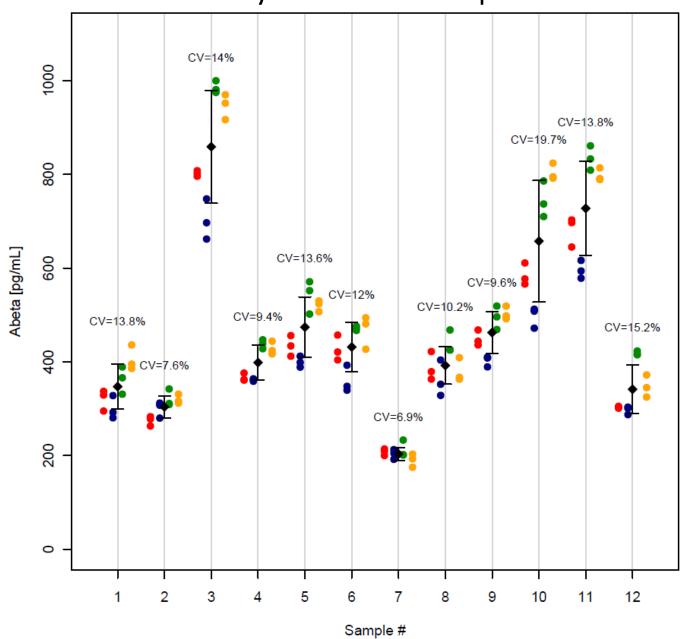
Total i on chromatogram of human CSF sample with the following concentrations of three Abeta peptides: 1320 pg/mL (A $\beta$  1-38), 5720 pg/mL (A $\beta$  1-40) and 545 pg/mL (A $\beta$  1-42)

hCSF patient sample

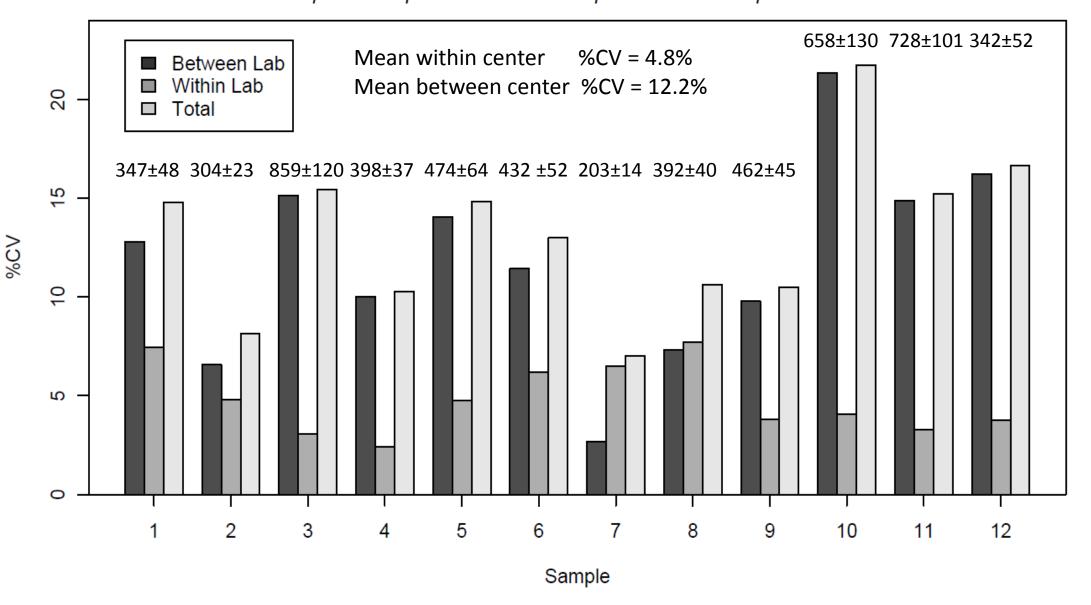
Typical calibration curve for the quantitation of amyloid beta 1-42 (single analyte assay). An artificial CSF with addition of BSA (4mg/mL) is the matrix for calibrators preparation.

### Round robin test on quantification of $A\beta_{42}$ in CSF by mass spectrometry

Josef Pannee<sup>a,\*</sup>, Johan Gobom<sup>a</sup>, Leslie M. Shaw<sup>b</sup>, Magdalena Korecka<sup>b</sup>, Erin E. Chambers<sup>c</sup>,


Mary Lame<sup>c</sup>, Rand Jenkins<sup>d</sup>, William Mylott<sup>d</sup>, Maria C. Carrillo<sup>e</sup>, Ingrid Zegers<sup>f</sup>, Henrik Zetterberg<sup>a,g</sup>,

Kaj Blennow<sup>a</sup>, Erik Portelius<sup>a;</sup> manuscript submitted for publication


Table 1. Mass spectrometry methods summary for the 4 centers

|                         | Waters                                | PPD                                       | U. Penn.                                    | U. Got.                                                                   |
|-------------------------|---------------------------------------|-------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------|
| IS concentration        | 1 ng/mL                               | 2 ng/mL<br>(spiked from<br>DMSO)          | 2 ng/mL                                     | 1.6 ng/mL                                                                 |
| CSF Volume              | 200 μL                                | 100 μL                                    | 250 μL                                      | 200 μL                                                                    |
| Calbrator matrix        | aCSF with 5% rat plasma               | aCSF with 4 mg/mL<br>HSA + IgG, glucose   | aCSF with 4 mg/mL<br>BSA                    | Human CSF                                                                 |
| LC System               | ACQUITY, 1D                           | ACQUITY; 2D<br>Trapping/Eluting           | ACQUITY; 2D<br>Trapping/Eluting             | Accela 1250                                                               |
| Dilution<br>(injection) | 50 uL + 25 μL H2O<br>(10μL)           | 50 uL + 50 uL H2O<br>(30 μL)              | 50 μL + 50 μL H2O<br>(50μL)                 | No dilution. Dried eluate resuspended in 25 $\mu$ L, 20 $\mu$ L injected. |
| LC mobile phases        | A- 0.3% NH4OH<br>B- 90:10 ACN/MP A    | A- 0.3% NH4OH<br>B- 90:5:5<br>ACN/TFE/H2O | A- 0.1% NH4OH<br>B- 75:25:5<br>ACN/MeOH/TFE | A: 0.1% NH₄OH, 5%<br>ACN<br>B: 0.03% NH4OH,<br>95% ACN                    |
| Column                  | BEH 300 2.1 x 150<br>mm, 1.7 μm, 50 C | BEH 300 2.1 x 150<br>mm, 1.7 μm, 50 C     | BEH 300 2.1 x 50<br>mm, 1.7 μm, 60°C        | ProSwift RP-4H<br>1x250 mm                                                |
| Flow rate               | 200 μL/min                            | 300 μL/min                                | 200 μL/min                                  | 300 μL/min                                                                |
| Mass<br>Spectrometer    | Xevo TQ-S                             | Xevo TQ-S                                 | API 5000                                    | TSQ Vantage                                                               |
| Transitions, m/z        | 1129.0→1078.5                         | 1129.0→1078.5                             | 1129.0→1078.5                               | 1129.58→1054.03,<br>1078.79, 1107.06                                      |
| Run time                | 8.5 mins                              | 8.5 minutes                               | 12 minutes                                  | 14 minutes                                                                |

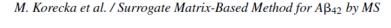
## Alzheimer's Association Global Biomarker Consortium mrmMSMS Study data for 12 CSF pools



Pilot investigation of performance of 4 mrm/tandem mass spectrometry methods for measurement of A $\beta_{1-42}$  in human CSF precision performance for 12 pooled CSF samples



## Summary


- Initial pilot study comparing performance across 4 participating laboratories completed
- The 4 participating labs: Waters (Erin Chambers); PPD (Rand Jenkins); UPenn (Les Shaw); UGot (Kaj Blennow)
- N=12 CSF pools (prepared & shipped by UGot to each participant laboratory)
- Use of a common sample preparation methodology
- 3 different mass spectrometer systems and 3 different HPLC systems
- 4 different calibration matrices
- Single-plex, triplex or pentaplex methods utilized
- Different batches of rPeptide  $A\beta_{1-42}$  standard utilized
- Very good agreement across the 4 laboratories is consistent with the ruggedness of the methodologic approach and supports their working together on the IFCC ref method assignment of accurate  $A\beta_{1-42}$  concentrations to planned CSF-based standard reference material
- The 4 centers have committed to a follow-up interlab study, as part of an IFCC/IRMM guided-study effort, that is planned and there are individual studies completed addressing areas of interest:
  - Calibrator matrix comparison studies
  - CSF stability
- The mrm/tandem mass spectrometry-based methodology with high conc GuHCl followed by mixed-bed (ion exchange/RP) cartridge sample preparation is a suitable candidate reference method for assigning accurate and precise  $A\beta_{1-42}$  values on CSF-based reference material.

## Next steps

- Use the IRMM preparation of A $\beta_{1-42}$ 
  - Pilot: 2 lab (UGot and UPenn) study using 10 CSF pools prepared at UPenn→lab to lab comparison, just completed
  - Prliminary testing of the IRMM dilution protocol
  - conduct the full IRMM guided "ring" trial
    - Compare across participating centers
    - Use gravimetric protocol for preparation of calibrators and include calibrators prepared by individual lab protocol in the two replicate runs
    - 20 patient CSFs, a set of neat and spiked CSFs
    - Statistical analyses
    - Report results
  - Use these qualified methods for assignment of concentration to the CSF pools for creation of reference materials
- Applications of mass spectrometry-based  $A\beta_{1-42}$  analysis:
  - Comparisons to existing and new immunoassays including analytical performance and clinical performance
  - Provides an accuracy-based "anchor" in methods comparisons
  - Studies in various patient populations of  $A\beta_{1-42}$ , and various metabolites for assessment of age and or disease related changes in metabolism

# Applications of mass spectrometry-based $A\beta_{1-42}$ analysis-comparison of clinical performance to an existing immunoassay

41 autopsy-proven AD cases and 41 living age- and gender-matched controls\*



447

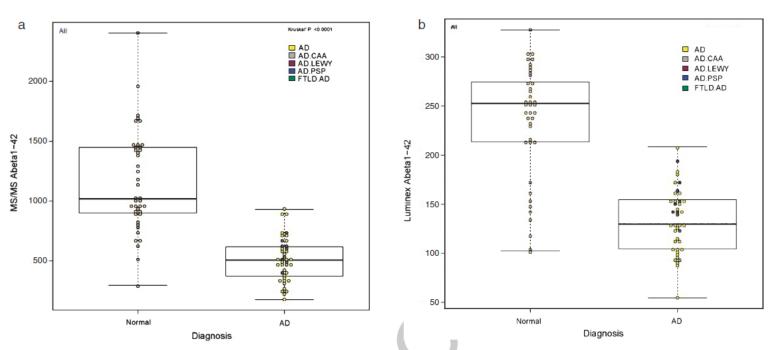
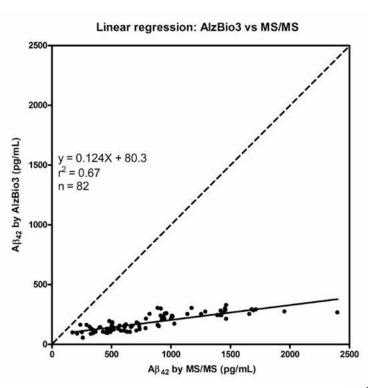




Fig. 3. Distribution of  $A\beta_{42}$  results in the group of 41 autopsy proven Alzheimer's disease subjects and 41 age matched control group; A) 2D-UPLC-MS-MS, B) AlzBio3 Luminex.

<sup>\*</sup>same population as described in AoN 2009

#### Analytical comparison

#### Clinical utility comparison



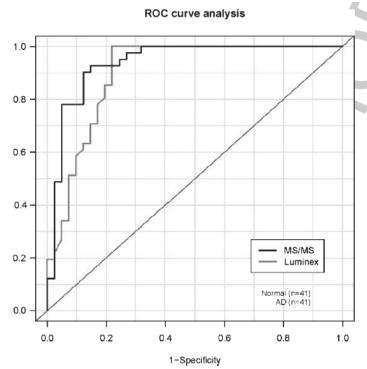



Fig. 4. Comparison of ROC curves for 2D-UPLC-MS-MS and AlzBio3 Luminex. The ROC AUC value for 2D-UPLC-MS-MS was 0.938, and for AlzBio3 Luminex immunoassay the AUC value was 0.900.

#### **ROC analyses**

Clinical performance using 41 AD, 41 cog normal controls:

Sensitivity: 92.7%

Specificity: 85.4%

PPV: 86.4%

NPV: 92.1%

Test accuracy: 89%

AUC: 0.94

Clinical performance using the same

41 AD and 41 controls for the AlzBio3

Immunoassay:

|                    | 2009 AoN |
|--------------------|----------|
| Sensitivity: 100%  | (96.4%)  |
| Specificity: 78%   | (76.9%)  |
| PPV:82%            | (82%)    |
| NPV:100%           | (95.2%)  |
| Test accuracy: 89% | (87%)    |
| AUC: 0.90          | (0.91)   |

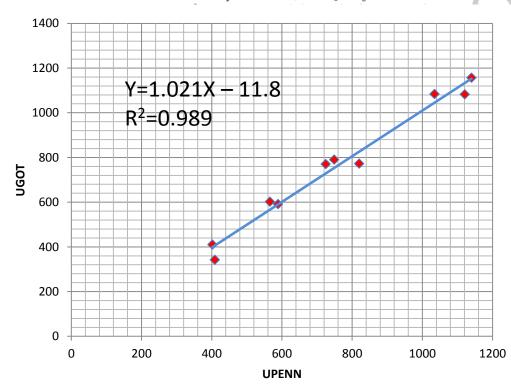
## Two candidate ref methods (UGot and UPenn)

DOI 10.3233/JAD-132489

IOS Press

Clinical Chemistry 60:7 000-000 (2014) Proteomics and Protein Markers

#### Mass Spectrometry–Based Candidate Reference Measurement Procedure for Quantification of Amyloid- $oldsymbol{eta}$ in Cerebrospinal Fluid


Andreas Leinenbach, <sup>1†</sup> Josef Pannee, <sup>2†</sup> Thomas Dülffer, <sup>1</sup> Andreas Huber, <sup>1</sup> Tobias Bittner, <sup>1</sup> Ulf Andreasson, <sup>2</sup> Johan Gobom, <sup>2</sup> Henrik Zetterberg, <sup>2,3</sup> Uwe Kobold, <sup>1</sup> Erik Portelius, <sup>2</sup> and Kaj Blennow <sup>2\*</sup> on behalf of the IFCC Scientific Division Working Group on CSF proteins

Qualification of a Surrogate Matrix-Based Absolute Quantification Method for Amyloid-β<sub>42</sub> in Human Cerebrospinal Fluid

Using 2D UPLC-Tandem Mass Spectrometry

Magdalena Korecka<sup>a</sup>, Teresa Waligorska<sup>a</sup>, Michal Figurski<sup>a</sup>, Jon B. Toledo<sup>a,d</sup>, Steven E. Arnold<sup>b,c</sup>, Murray Grossman<sup>c</sup>, John Q. Trojanowski<sup>a,d</sup> and Leslie M. Shaw<sup>a,d,\*</sup>

- Two candidate ref methods
- 10 CSF pools provided by UPENN
- 3 replicate runs
- Used  $A\beta_{1-42}$  prep provided by IRMM for the Ring trial & each lab used their calibration dilution protocol.

