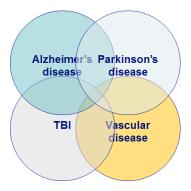
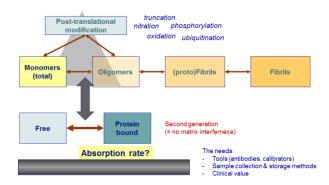


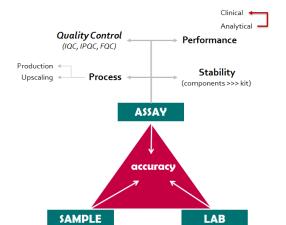
Location: Gent (B)

INTRODUCING A NEW ERA FOR NEUROLOGICAL DIAGNOSTICS


DEVELOPING THE IDEAL TESTS FOR PHYSICIANS AND CLINICAL RESEARCH

Presented by Hugo Vanderstichele Date: 3/3/2017

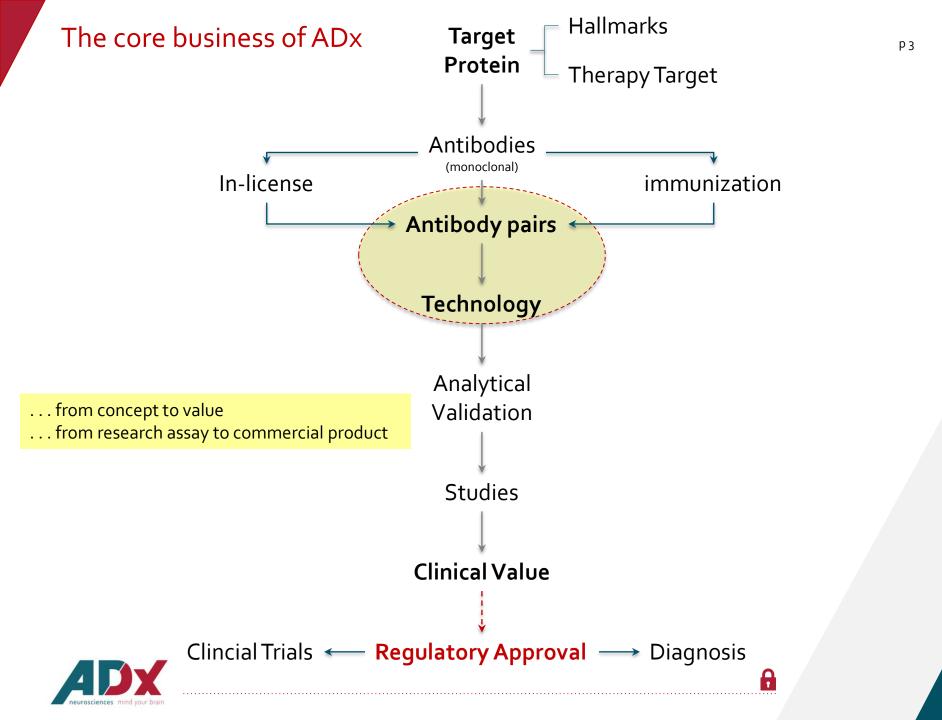

Commercialized by EUROIMMUN

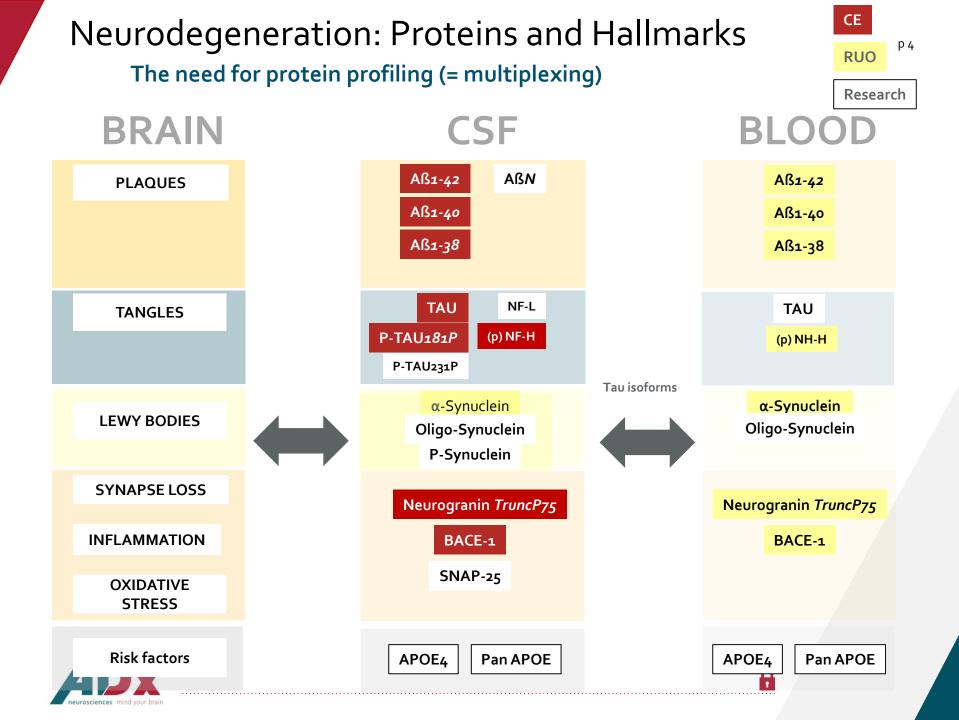

Some considerations from the field

Neurodegeneration The need for protein **profiles**

Identify the correct protein isoform

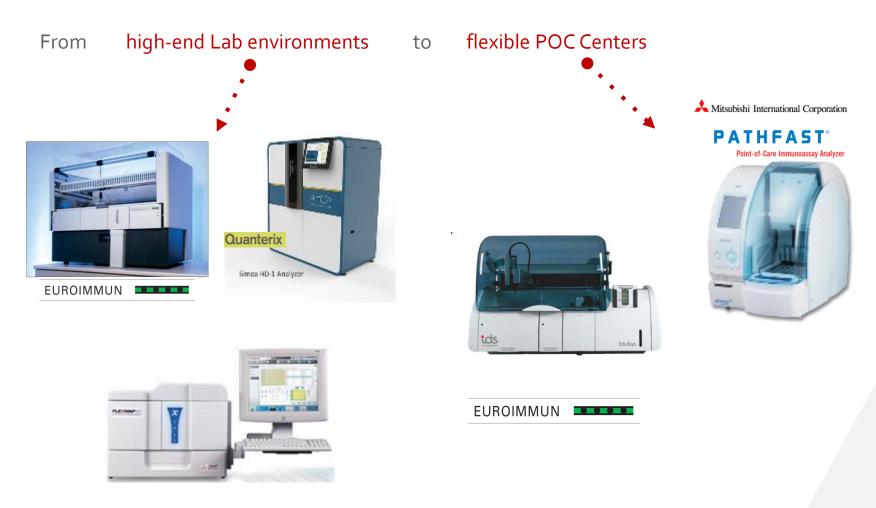
Standardization required at different levels


Regulatory approval From RUO/IUO > IVD


Context of use

- Diagnosis
- (... early, differential, prognosis)
- Clinical trials
 - (... enrichment, follow-up, dose-adjustment)

1



ADx INSIDE: THE ADx mAbs & ASSAYS FIT A BROAD RANGE OF TECHNOLOGY PLATFORMS

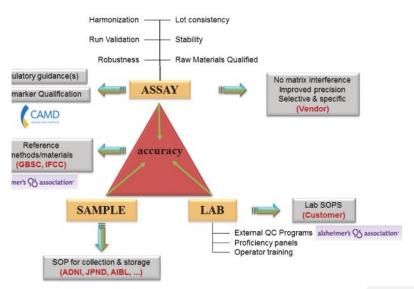
A

Regulatory - Qualification

The need for regulatory approval

Journal of Alzheimer's Disease 55 (2017) 19-35 DOI 10.3233/JAD-160573 IOS Press

Review


Cerebrospinal Fluid Biomarkers for Alzheimer's Disease: A View of the Regulatory Science Qualification Landscape from the Coalition Against Major Diseases CSF Biomarker Team

Stephen P. Arnerić^{a,*}, Richard Batrla-Utermann^b, Laurel Beckett^c, Tobias Bittner^b, Kaj Blennow^d, Leslie Carter^e, Robert Dean^f, Sebastiaan Engelborghs^g, Just Genius^e, Mark Forrest Gordon^h, Janice Hitchcock^f, June Kaplowⁱ, Johan Luthmanⁱ, Richard Meibach^j, David Raunig^k, Klaus Romero^a, Mahesh N. Samtani^l, Mary Savage^m, Leslie Shawⁿ, Diane Stephenson^a, Robert M. Umek^o, Hugo Vanderstichele^p, Brian Willis^f and Susan Yule^q

Collaborative efforts required

19

Global Initiatives Focused on AD CSF Biomarkers

1

Journal of Alzheimer's Disease 53 (2016) 1121–1132 DOI 10.3233/JAD-160286 JOS Press

Journal of Alzheimer's Disease 49 (2016) 187-199

Biomarkers

DOI 10.3233/IAD-150511

IOS Press

Improved SOPs collection & storage

Optimized Standard Operating Procedures for the Analysis of Cerebrospinal Fluid $A\beta_{42}$ and the Ratios of $A\beta$ Isoforms Using Low Protein Binding Tubes

Hugo Marcel Johan Vanderstichele^{a,*}, Shorena Janelidze^b, Leentje Demeyer^a, Els Coart^c, Erik Stoops^a, Victor Herbst^d, Kimberley Mauroo^a, Britta Brix^d and Oskar Hansson^{b,e}

Collaborations: Lund University (S), VUMC (NL)

Harmonization between studies

Transferring Cut-off Values between Assays

for Cerebrospinal Fluid Alzheimer's Disease

Leandro García Barrado^a, Els Coart^{b,*}, Hugo M.J. Vanderstichele^c and Tomasz Burzykowski^{a,b}

Journal of Alzheimer's Disease xx (20xx) x-xx DOI 10.3233/JAD-160298 IOS Press

Automation = better precision

Performance Evaluation of an Automated ELISA System for Alzheimer's Disease Detection in Clinical Routine

Davide Chiasserini^a, Leonardo Biscetti^a, Lucia Farotti^b, Paolo Eusebi^a, Nicola Salvadori^a, Viviana Lisetti^a, Francesca Baschieri^b, Elena Chipi^a, Giulia Frattini^a, Erik Stoops^c, Hugo Vanderstichele^c, Paolo Calabresi^{b,d} and Lucilla Parnetti^{a,b,*}

Collaborations: University of Perugia, University of Leuven (B)

Reference materials needed

Clinica Chimica Acta xxx (2016) xxx-xxx

CSF A $\!\beta_{1-42}$ – an excellent but complicated Alzheimer's biomarker – a route to standardisation

Julia Kuhlmann^a, Ulf Andreasson^{b,c}, Josef Pannee^{b,c}, Maria Bjerke^{b,c}, Erik Portelius^{b,c}, Andreas Leinenbach^d, Tobias Bittner^d, Magdalena Korecka^e, Rand G. Jenkins^f, Hugo Vanderstichele^g, Erik Stoops^g, Piotr Lewczuk^{h,j}, Leslie M. Shaw^e, Ingrid Zegers^a, Heinz Schimmel^a, Henrik Zetterberg^{b,c,j}, Kaj Blennow^{b,c,*}, on behalf of the IFCC Working Group on Standardization of CSF proteins (WG-CSF)

Collaboration: IDDI (B)

Biomarkers and new applications

Journal of Alzheimer's Disease 53 (2016) 1523–1538 DOI 10.3233/JAD-160227 IOS Press 1523

The need for progression markers

The Cerebrospinal Fluid Neurogranin/BACE1 Ratio is a Potential Correlate of Cognitive Decline in Alzheimer's Disease

Ann De Vos^a, Hanne Struyfs^b, Dirk Jacobs^a, Erik Fransen^c, Tom Klewansky^d, Ellen De Roeck^{b,e}, Caroline Robberecht^{f,g}, Christine Van Broeckhoven^{f,g}, Charles Duyckaerts^d, Sebastiaan Engelborghs^{b,h} and Eugeen Vanmechelen^{a,*}

CSF Aß ratios correlate better with Aß PET imaging

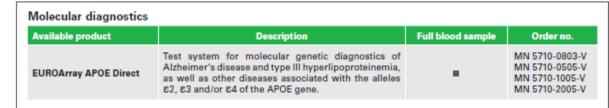
1

RESEARCH ARTICLE

CSF A β 42/A β 40 and A β 42/A β 38 ratios: better diagnostic markers of Alzheimer disease

Shorena Janelidze¹, Henrik Zetterberg^{2,3}, Niklas Mattsson^{1,4}, Sebastian Palmqvist^{1,5}, Hugo Vanderstichele⁶, Olof Lindberg¹, Danielle van Westen^{7,8}, Erik Stomrud^{1,4}, Lennart Minthon^{1,4}, Kaj Blennow², for the Swedish BioFINDER study group & Oskar Hansson^{1,4}

Commercial products from EUROIMMUN


Example of a validation report

A

Commercial products

Antigen detection				
Available product	Description	CSF	Plasma	Order no.
Beta-Amyloid (1-38) ELISA	Test kit for the quantitative determination of beta- amyloid (1-38) as an additional diagnostic tool in sus- pected clinical amyloid pathology of the brain.	•	•	EQ 6501-9601-L" EQ 6501-9601"
Beta-Amyloid (1-40) ELISA	Test kit for the quantitative determination of beta- amyloid (1-40). Can be used to calculate beta-amyloid (1-42)/beta-amyloid (1-40) as an additional diagnostic tool in suspected amyloid pathology of the brain.	•	•	EQ 6511-9601-L EQ 6511-9601*
Beta-Amyloid (1-42) ELISA	Test kit for the quantitative determination of beta- amyloid (1-42) as an additional diagnostic tool in suspected clinical amyloid pathology of the brain.	•	•	EQ 6521-9601-L EQ 6521-9601*
Total-Tau ELISA	Test kit for the quantitative determination of total tau for the diagnosis of neuronal apoptosis.			EQ 6531-9601-L
Phosphorylated-Tau ELISA	P-tau (T181) determination is an additional diagnostic tool in suspected tauopathy in the brain of patients with neurodegenerative disorders.	•		coming soon
Beta-Amyloid Control Set	CSF sample set with target values. Can be used for on-site training as well as regular internal quality control of amyloid and tau measurements.	•		CK 6500-0502-L
ApoE4 ELISA	Test kit for ApoE4 protein determination. Measureable ApoE4 protein concentrations indicate at least one ApoE allele that is a risk factor for the development of Alzheim- er's disease.	•	•	coming soon
Pan-ApoE ELISA	Test kit for the quantitative determination of pan-ApoE.	•	-	coming soon
BACE1 ELISA	Test kit for the determination of BACE1 protein concentration.	•		EQ 6541-9601-L*
Neurogranin (trunc P75) ELISA	Test kit for the quantitative determination of neurogranin.	•		EQ 6551-9601-L*
pNf-H ELISA	Test for the quantitative determination of phosphory- lated neurofilament heavy chain. Can be used as an ad- ditional tool for the early diagnosis of motoneuro- nal diseases like amyotrophic lateral sclerosis.	•	•	EQ 6561-9601*
Alpha-Synuclein ELISA	Alpha-Synuclein is a measure for Lewy body pathology in the brain.	•		coming soon
on request and for research	use only			

VALIDATION REPORTS

EUROIMMUN	Medizinische Labordiegzostika AG	

VALIDATION REPORT

Beta-Amyloid (1-42) ELISA

Addendum 1 – References

Addendum 2 – Certificate of the Beta-Amyloid (1-42) calibrator

Addendum 3 - Preparation of CSF controls; preparation of calibrators and validation controls

Addendum 4 - Declaration of Conformity and Certificate

Table of Contents

Indroduction	4
Disease course	
Diagnosis	
Principle of the test	
Materials	
Intellectual property	
Test instructions	
Validation parameters	8
1. Analytical sensitivity	
1.1 Limit of Blank	
1.2 Limit of Detection 1.3 Limit of Quantitation	
2. Reproducibility	
2.1 Intra-assay precision	
2.2 Inter-assay precision	
2.3 Inter-lot precision	
2.4 Between-operator variability	
3. Linearity	
4. Specificity (cross-reactivity)	
5. Selectivity	23
6. Interferences	
6.1 Whole blood contamination	
6.2 High-dose hook effect	
7. Method comparison (Invitrogen, Fujirebio)	
8. Automation (EUROIMMUN Analyzer I)	
9. Stability	
9.1. Accelerated stability testing A. Single components	
B. Complete kit at 37°C.	
C. Complete kit at -20°C	
9.2 Real-time stability testing	35
A. Open components	
B. Complete kit	
9.3 Sample stability A. Influence of freeze-thaw cycles	
B. Stability under stress conditions	
C. Influence of stabilizers on sample finding	
10. Robustness experiments	41
10.1 Sample incubation	
A. Single versus determination in duplicate	
B. Influence of temperature C. Influence of biotin volume	
D. Influence of blotin volume D. Influence of sample volume	
10.2 Conjugate incubation time	
10.3 Assay protocol	
A. Use of pre-rinsed dilution plates	
B. Drift effect	