

the compassion to care, the leadership to conquer

The Alzheimer's Association Quality Control Program

Niklas Mattsson, MD, PhD
Clinical Neurochemistry Laboratory
Sahlgrenska University Hospital
Göteborg/Mölndal, Sweden

niklas.mattsson@neuro.gu.se

CSF AD biomarkers

- > Research
- **≻**Clinical trials
- ➤ Clinical practice
- ➤ New diagnostic criteria

Biomarker variability

- Varying absolute levels between studies
- Stable relative differences between patients and controls
- Problem for universal cut-offs and reference ranges

Aims of the QC program

- Identify and monitor differences among labs
- Facilitate standardization of measurements
- Facilitate global implementation of AD biomarkers to support optimal patient management

Program overview

Participating lab

Core facility
Mölndal, Sweden

Participating lab

Participating lab

Participating lab

2009-1A 2 2009-1B 2

2010-2A 2010-2B

QC-L QC-L

2010-3 2010-4 2011-5 2011-6 2011-7 2012-8

Rounds 1-2: Mattsson N et al, **The Alzheimer's Association external** quality control program for cerebrospinal fluid biomarkers.

Alzheimer's & Dementia 2011;7:386-395

Rounds 3-8: manuscript in preparation

Program participators

79 laboratories 23 countries

Labs and techniques

Example: results round 6

Αβ42

Alzheimer's Association QC program for CSF

Longitudinal evaluations

Göteborg (Lab 2)

Round:	2010:4 QC-L
Result:	562 pg/mL
Method:	INNOTEST

All 34 labs in this round

Иean:	559 pg/mL
SD:	134 pg/mL
CV:	24%

Round

Inter-lab CVs rounds 1-7

P-tau: reduction over time?

Influence of outliers

The laboratory is alerted and may revise procedures

Influence of batches?

The QC program monitors batches of analytical kits and allows detection of batch-dependent variability

Low variability among reference labs

Amsterdam, Erlangen, Ghent, Mölndal, Philadelphia

Confounding factors

Preanalytical	Sample handling						
	Assay kit handling and storage						
Analytical	Laboratory Equipment						
	Calibration						
	Detection instrument						
	Pipetting						
	Analyst						
	• Competency						
	Familiarization with the Method						
	Forward/Reverse Pipetting						
	Reagent handling						

Postanalytical	Data handling						
	Analyzing singlets/duplicates						
	Decisions for rejecting data						
	Type of curve fitting used						
	Software for data calculation						
Kit Manufacturing	Documentation						
	Test Procedure Instructions						
	Minimal Method Optimization						
	Reagents						
	Source of reference standard						
	Buffer-composition						
	Lot-lot variability						
	Vendor-vendor variability						
	Quality controls						

QC program checklist

ASSAY: Standards (calibrators) and QC system								
1	Calibrators diluted from stock in separate polypropylene tubes			Yes			No, spec	cify:
2	Calibrators (standards)and samples analyzed in duplicates			Yes			No, spec	cify:
3	Calibrators (including no. of calibrators) prepared according to kit insert			Yes			No, spec	sify:
4	Internal control samples used for quality control Yes (pooled CSF)			Yes (other, e,g., spiked samples) No				
ASSAY: Conditions								
1	The test procedures in the kit inserts are followed without any deviation			Yes			No, spec	cify:
2	Polypropylene plates used for pre -incubation (Aβ 1–42)			Yes			No	
3	If yes, polypropylene plate used for both standards and CSF samples			Yes			No	
ASSAY: Data analysis and run acceptance								
1	1 Plate reader settings: 450 nm, endpoint Yes			No				
2	Standard curve calculated using the 4 parameter logistic equation Yes			No, specify equation:				
3	QC samples vortexed before analysis			Yes				No, specity:
ASSAY: Reagents								
1	Kits stored following kit insert: ELISA plate at +2-8°C; standards at < -20°C			Yes			No, spec	cify:
2	Assay components (standards, plate and reagents) only from the same kit box			Yes			No, spec	cify:
3	Kit used within expiry date given provided by the manufacturer			Yes			No, spec	cify:

Future prospects

- Identify confounding factors
- Inter-laboratory, intra-laboratory and assay related error sources
- ➤ Alert outliers → revise procedures
- ➤ Alert kit producers → improve kit stability
- Certified reference materials and methods

Proposed role of the QC program in further CSF biomarker standardization

Reference methods GCBS with partners, including the IFCC working group (to be formed) Use reference methods to set biomarker levels in **reference materials**

- Pilot batches by GCBS with partners including the IFCC working group
- Large-scale production by IRMM

Supply
reference
material to assay
producers by
IRMM (nonprofit)

Certification of methods and materials by IFCC

Collaboration with other resarch consortia including JPND

The QC program

The optimal system to monitor and evaluate the progress of the global standardization efforts

alzheimer's \bigcap association

the compassion to care, the leadership to conquer

Acknowledgments

the compassion to care, the leadership to conquer

Clinical Neurochemistry Laboratory
Institute of Neuroscience and Physiology
Sahlgrenska University Hospital, Mölndal/Gothenburg, Sweden

Kaj Blennow, MD, Professor
Henrik Zetterberg, MD, Professor
Ulf Andreasson, PhD
Staffan Persson, coordinator
Åsa Källén, laboratory technician
Monica Christianson, laboratory technician
Sara Hullberg, laboratory technician
Dzemila Secic, laboratory technician

