Cerebrospinal Fluid Biomarkers in Alzheimer’s Disease and Related Disorders Research

Lisa Quinn, PhD, AGACNP-BC, OCN
Research Nurse Practitioner
Alzheimer’s Clinical & Translational Research Unit
Massachusetts General Hospital

Learning Objectives

1. Compare observational studies and interventional studies
2. Identify 2 biomarkers of interest in AD
3. Discuss importance of diversity in research on ADRD

Overview

- Define key terms
- Discuss:
 - CSF and what it tells us about brain health
 - Emerging evidence about inflammation, immunity
 - New uses of existing drugs
 - ACTRU research studies
 - Recruitment challenges
 - Diversity in research participants
 - Access to research studies
Definitions

• Dementia
• Alzheimer’s Disease (AD) and related dementias (ADRD)
 • Beta amyloid plaques
 • Tau tangles
• Lewy Body Dementia (LBD) – alpha-synuclein deposits
• Frontotemporal Dementia (FTD)
• Vascular Dementia
• Mixed Dementia

Expanding focus of ADRD research

• Hallmark features of tau tangles and amyloid plaques
 • Not well correlated with cognition
 • People with high burden of tau or amyloid in their brains functioning normally
 • People without significant tau or amyloid displaying impairment
• Towards inflammation and immune system
 • Trying to put out the “fire”
 • Are buildups of tau tangles and amyloid plaques the “smoke”?
 • Increasing attention paid to the ancillary “nursemaid” cells
 • Microglia
 • Astrocytes

Cerebrospinal Fluid (CSF)

• Clear, colorless fluid occupying subarachnoid space and ventricular system around and inside the brain, spinal cord
• Produced by ependymal cells in choroid plexus
• Cushions/buffers cortex
• Provides basic mechanical and immunological protection to the brain inside the skull
• Vital to cerebral autoregulation and blood flow
Basic Functions of CSF

- Buoyancy
- Protection
- **Chemical stability**
 - Removes metabolic waste from CNS through BBB, allows for homeostatic regulation of neuroendocrine factors
- **Waste removal**
 - Flows throughout ventricles and absorbed back into bloodstream
- Prevention of brain ischemia – related to ICP and blood perfusion

Why focus on CSF?

- Gives us meaningful information about the brain behind the BBB
- Measuring biomarkers is critical to understanding pathology in living people
- Important for ruling out other pathologies such as MS, infection, etc.
- Changes in biomarkers typically occur before symptom onset
- Well studied in millions of people across disease spectrum
 - Not ethnically diverse samples!
- **Significant sensitivity** to diagnose AD (~90%):
 - Amyloid levels typically low
 - Tau and phospho-tau elevated
- **Decent specificity** to rule out AD (~70-80%)
 - Could have prodromal AD?

Lumbar Puncture (LP)

- No anticoagulation (Aspirin 81mg is OK)
- Outpatient procedure takes about 30 min
- Lidocaine to numb the skin
- People typically recover in 2-24 hrs
- Monitor for headaches
Biomarkers

“A defined characteristic that is measured as an indicator of normal biological processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions” – FDA-NIH

- Reliable indicators of presence of disease
- Combination of fluid and imaging (current)

Challenges:
- Patients may be reluctant to have LP
- Insurance may deny covering “fancy” imaging
- Timing: the disease process has already begun by the time these abnormal biomarkers are discovered

A/T/N Classification

- 7 major biomarkers of interest in AD/AD research
- A: value of β-amyloid
 - Either amyloid PET or CSF Aβ-42
- T: value of tau
 - Either tau PET or CSF phospho-tau
- N: biomarkers of neurodegeneration or neuronal injury
 - Either FDG-PET, structural MRI, or CSF total tau
- Each category is either (+) or (-)
 - Example: Individual results would appear as A+/T+/N-, or A+/T-/-N-
Microglia

- “First responders”
- Small with “thorny” processes which can touch neighboring neurons
- Can transform into macrophages to clear debris, waste
 - Clear Aβ and tau
- Monitor health of neurons by detecting injuries to neurons

Astrocytes

- Star-shaped glial cells
- Cover nearly all capillaries in CNS
 - Support BBB
 - Keep toxins out of brain
- Provide nutrients to neurons
- Repair tissue after injury
- Regulate neuronal communication by recycling neurotransmitters released during synaptic transmission
- Regulate external chemical environment by removing excess ions

Biomarkers of Synapse or Neuronal Loss

- Neurofilament Light Chain (NfL)
 - Very sensitive to AD onset
 - Released into extracellular space when neurons degenerate
- Neurogranin (Ng)
 - Post-synaptic protein concentrated in dendritic spines, hippocampus
 - Elevated early in disease progression
 - Localized at epicenter of pathogenic events in AD
Biomarkers of Inflammation and Microglia “Dysfunction”

• “Chicken or the egg”
 • Part of original pathogenesis?
 • Or reaction to amyloid and tau deposition?
• Soluble TREM2
 • Triggering Receptor Expressed on Myeloid Cells 2
 • Expressed on microglia in the brain
 • Regulates immune cell activation after ligand binding (including APOE and Aβ)
 • Regulates cytokines and microglia activation
• YKL-40
 • Glycoprotein expressed in astrocytes and microglia
 • Plays a role in inflammation and tissue remodeling

Biomarkers of Related Disorders

• TAR DNA-Binding Protein 43 (TDP-43)
 • Present in up to 50% of AD cases
 • Main feature of FTD and ALS
• Alpha-synuclein
 • Key component of Lewy Bodies, Parkinson’s Disease, multi-system atrophy (MSA)
 • Involved in pre-synaptic signaling
• Vascular Damage and BBB
 • Vascular damage is large component of AD
 • Microvascular damage often seen (Mixed dementia)

Key Point

• Although we cannot control our genetics or history, we can control blood pressure, diet, exercise
• Aggressive BP control to prevent microvascular damage!
Observational Studies

- No intervention
- Pro: generally lower time commitment, no new drugs or s/e, great for “healthy controls”
- Con: no change to disease trajectory
- May include:
 - Collection of body fluids (LP)
 - Imaging (MRI, PET-CT)
 - Cognitive testing
 - EEG
 - Wearable technology (FitBit)

Interventional Studies

- Testing investigational drug/device
- Pro: may benefit patient, feeling of hope
- Con: false hope, may receive placebo, can be time-intensive, strict I/E criteria
- May include:
 - Oral, IV, or SQ medications
 - Placebo vs. “active” drug
 - Activities from observational studies

New research on old drugs

- Thinking outside the box
- New drugs are expensive and time-consuming to develop
- How can we repurpose already FDA-approved meds to treat ADRD?
 - Metformin
 - Methylphenidate (Concerta®)*
 - Nicotinamide riboside (Niagen)
 - Bacille Calmette-Guerin (BCG) vaccine*

Methylphenidate Study (Concerta®)

- Participants wear a FitBit, play Lumosity games, answer questions about their sleep, mood, etc.
- Great way to determine whether a drug helps an individual
- Double-blind multi-crossover design allows for participant to serve as their own control
BCG Vaccine Pilot Study

- Bacillus Calmette-Guérin (BCG) has “off-target” effects
 - Bladder cancer
 - Type 1 Diabetes
- Influences regulatory T-cells (Tregs) of the innate immune system
- Can BCG increase neurotrophins and decrease neurotoxins?

<table>
<thead>
<tr>
<th>Activity</th>
<th>Screening Visit</th>
<th>Baseline Visit/BCG Vaccine 1</th>
<th>Baseline Visit/BCG Vaccine 2</th>
<th>Outcome Visit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCG Vaccination</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Vaccination Site Monitoring</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Vaccination Site Infection</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Vaccination Site Infection</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Vaccination Site Infection</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Vaccination Site Infection</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Fasting Lumbar Puncture for Biomarkers</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Describe Skin Lesions

- Induration: 2-4 weeks after vaccine
- Pustule formation: 5-7 weeks
- Scar formation: 2-3 months

Importance of Diversity in Research

- Most studies include primarily white patients
- Skewed towards more affluent patients
- How does this influence our data?
 - We don’t know how incomplete the picture is
 - Without representation, drugs that could help diverse patients may not “perform” well enough
Trusting Relationships

- Crucial to develop trusting relationships with the community
- Working against challenges of institutionalized racism and history of mistreatment by the medical community
- Takes time but it’s worthwhile!
- Community service that can be sustained
- Meet people where they are - church, grocery store, community centers

Lisa Quinn, PhD, AGACNP-BC, OCN
Email: LQuinn@mghihp.edu
Phone: 617-724-4076
149 13th Street
Office 10-012
Boston, MA 02129